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Executive Summary 
This report summarizes the activities conducted during the Automated Vehicle (AV) Benefits Estimation Project 
between 2016 and 2017. This project is an expansion of earlier work and the resulting document provides 
summaries as well as updates based on the most recent information. Elements of the Benefits Framework 
include: 

• Travel Behavior (was called Transportation System Usage in the 2015 report) 
• Safety 
• Vehicle Operations (was called Vehicle Mobility in the 2015 report) 
• Energy / Emissions 
• Socio-Economic Impacts (was called Economic Analysis in the 2015 report) 
• Personal Mobility (was called Accessibility in the 2015 report) 
• Network Efficiency (was called Regional Mobility in the 2015 report) 
• Public Health (new since the 2015 report) 
• Land Use 

During the past year, efforts focused on the modeling of travel behavior, safety, vehicle operations, and 
energy/emissions, along with initial work on socio-economic impacts (economy and jobs). Continuing efforts 
focus on international collaboration in order to facilitate the use of findings and data from projects around the 
world. Below are brief descriptions of each chapter within this document.  

Travel Behavior focuses on two elements of the travel demand modeling chain: vehicle ownership modeling 
and mode choice modeling. Initial work in this impact area included using ideas from system dynamics 
modeling to elucidate key factors in user response to AVs, especially as they relate to the decision to purchase 
a privately-owned vehicle (POV) or rely on shared, automated vehicles. Recent efforts, expanding on this initial 
work, identified impact linkages for these decisions, and will be used to develop a proof-of-concept model, 
using “typical” parameters from travel demand models. 

Safety details the significant challenge to establish a baseline for modeling. In 2015, preliminary target crash 
populations that could be affected by automation were identified. Building off of this initial effort, this document 
highlights the use of available naturalistic driving data sets to establish a baseline of driving conflicts and 
historical crash data sets to determine baseline crashes that may be encountered by automated vehicles. This 
baseline condition sets a foundation for estimating system effectiveness, as this baseline condition will be 
compared to the applicable treatment condition (i.e., conflicts and crashes with automation), when available.  

Vehicle Operations explores the creation of a model of an idealized freeway in PTV Vissim, a traffic 
microsimulation product. Vissim car-following parameters were adjusted to mimic an AV operation by removing 
the human “unconscious oscillations” in car following. The simulation resulted in a small (5%) improvement in 
link capacity, an expected result as there was no change in desired following distance. Ongoing efforts include 
the testing of the Intelligent Driver Model (IDM) and the Microscopic Model for Simulation of Intelligent Cruise 
Control (MIXIC) in order to model more complex scenarios.  

Energy / Emissions focuses on a script developed to create an operating mode distribution from Vissim output. 
This distribution was then provided to the EPA MOVES2014a model, to provide fuel consumption and tailpipe 
emission results. 

Finally, in Economy and Jobs, we introduce the larger economic impacts of AV adoption.  
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Chapter 1   Benefits Framework 
Automated vehicles (AVs) have the potential to bring about transformative safety, mobility, energy, and 
environmental benefits to the surface transportation system. These benefits may include crash avoidance; 
reduced energy consumption and vehicle emissions; reduced travel times; improved travel time reliability and 
multi-modal connections; improved transportation system efficiency; and improved personal mobility, 
particularly for those who do not have access to driving a motor vehicle.  

AVs are being introduced into a complex transportation system. Second order impacts, such as the possibility 
of increased vehicle-miles travelled (VMT), are of significant concern. Given the complexity of the impacts, a 
modeling framework is needed to ensure that they are adequately captured. The Framework is envisioned to 
increase the ability to adequately portray the potential and actual impacts of automated vehicle technologies 
and benefits to the Nation’s transportation system.  

The initial Framework was developed in Phase 1 of this project conducted during 2014-2015; an updated 
version is presented in this chapter. In 2015, the Impact Assessment subgroup of the European Union-United 
States-Japan Automation in Road Transportation Working group was established to further international 
collaboration in this work. The updates in this chapter draw from both the work of the Impact Assessment 
subgroup and our recent work in system dynamics. It is organized as follows: 

• Audience for the Framework 
• Classification of AV systems 
• Framework, Direct and Indirect impacts 
• Sources of Uncertainty 
• Impact Mechanisms 
• Approaches inspired by system dynamics to characterize potential impacts 

1.1 Audience for the Framework 
There are two primary audiences for this report: designers of field operational tests (FOTs) and policy-makers.  

FOT designers may find the Framework useful during the early in the systems engineering process (concept 
exploration1, concept-of-operations2 development, defining the aims objectives, research questions, and 
hypotheses3). The Framework facilitates starting with the end in mind4. For FOT designers, the Framework 
provides a structure for addressing the “Where”, “What” and “Why” of the project. Section 1.2 of this document 
describes the elements of AV system classification, which is necessary for such a Framework, including, but 
not limited to, the operational design domain (the Where and What). Later, the elements of the Framework 
itself (section 1.3) help describe “Why” the project is being done. The associated Key Performance Indicators 
(KPIs) provide initial thoughts on measures for validation, to define the data that should be collected, and to 

                                                      
1 Section 4.2.1 of ITS Systems Engineering Guide (National ITS Architecture Team, 2007) 
2 Section 4.3 of ITS Systems Engineering Guide (National ITS Architecture Team, 2007) 
3 Activity 2 in the FESTA framework (Barnard et al., 2017) 
4 See “Start with Your Eye on the Finish Line” in  Section 3.2.2 of ITS Systems Engineering Guide (National ITS 
Architecture Team, 2007) 
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ensure that the information gathered maximizes the value of the test. Those performing impact assessment for 
the automation of surface transportation can use it as a starting point in design of evaluation work. 

Policy-makers may use the Framework to support policy analysis, long-range scenario-based planning, and 
major infrastructure investment decisions, where various automation futures are being investigated. For policy-
makers, the direct and indirect impact areas, as well as their associated linkages, provide a path from the 
results of a field test, towards potential larger societal impacts. As automation is deployed, the Framework may 
be applied to evaluate the new data that becomes available, and can provide insight as to what related data 
should be collected.  

Finally, for both FOT designers and policy-makers, the Framework can support exploratory analysis. For 
example, users can take broad assumptions about either inputs or outcomes in the future and trace them back 
through the Framework to other things that should be considered or measured. A specific example of the latter 
might be to consider different roles of shared mobility in relation to transit (e.g., ranging from effective last-mile 
service to full replacement) and mapping that back out to total trips, new types of bottlenecks (e.g., at 
pickup/drop-off points), and other aspects of demand formation. 

1.2 AV System Classification 
The operational design domain (ODD) is important to the characterization of automated vehicle systems. In the 
European FESTA Framework, these elements are described as situational variables. These characteristics 
detail answers to questions such as: What is needed (road markings, signs, signals, mapping, V2X 
communications, winter maintenance) to support automated driving? More broadly, what is the operational 
design domain for the automation application? According to SAE J3016 (SAE, 2016), the operational design 
domain may include geographic, roadway, environmental, traffic, speed, and/or temporal limitations. It may 
also include one or more driving modes. Examples of driving modes include expressway merging, high-speed 
cruising, and low-speed traffic jam.  

Infrastructure requirements can be characterized by a detailed description of the operational design domain, to 
indicate where the automation application is designed to function, and where it has been tested. Infrastructure 
elements of the operational design domain include: 

• Specific location where the automation system may operate 
• Level of mapping needed where the automated system operates 
• Type of road: number of lanes and carriageways, required markings, pavement type 
• Types of intersections: merge, diverge, roundabout, traffic signal, stop/yield sign 
• Usage of road: exclusive to AVs, shared with other motor vehicles, shared with bicyclists and 

pedestrians 
• Design speed 
• Daytime / nighttime 
• Types of road surface conditions: dry, wet, snowy, icy 
• Visibility: clear, rain, snow, fog 
• Temperature, atmospheric pressure 

It is important to specify the description of the system and the service for which impact assessment is made, 
and thus providing the implementation of vehicle automation should be the first step. Otherwise, researchers 
risk comparing very different services even though they have a similar ODDs. The FESTA Handbook (Barnard 
et al., 2017) addresses this classification through specifying use cases. The description of the automation 
system or service should include (at least): 
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• Purpose of the system. Is it for person travel, or freight? Within person-travel, is it aimed at area 
residents, visitors, specifically at persons with disabilities, etc.? For freight, consider the type and 
size of shipments.  

• Service type. Is it for short (a few km) or long haul? Does the system serve individuals or groups? 
Is it on a fixed route, or may the route vary? Is it a specialized system with a limited ODD (e.g., 
valet parking)?  

• Vehicle ownership, management, and maintenance. Does the system envision single privately-
owned vehicles (similar to most automobiles today) or vehicles that are part of a larger fleet? 

• Vehicle type(s) (e.g., passenger vehicle, mini bus, large bus, truck, etc.)  
• SAE level of automation 
• Available automated driving functions. What vehicle control is automated? How is the driving 

environment being monitored? Is there dynamic routing? Are there communications (V2X) with 
other road users or infrastructure?   

1.3 Direct and Indirect Impacts of Automation 
This section describes a framework for assessing the impacts of AV applications. It then explains each type of 
impact area in further detail, including providing a list of proposed key performance indicators (KPIs) as a way 
to monitor changes in the overall system. It is important to note the various terminology presented in this 
section. An impact is defined as an action caused by automated vehicles that has an effect on other actions. 
An impact area is defined as categories of similar impact types or actions, such as safety, vehicle operations, 
and personal mobility among others.  

AV impacts may be divided into two major groups: direct and indirect. Figure 1 depicts the impact areas and 
their respective linkages. Direct impacts are those which have a relatively clear cause-effect relationship with 
the primary activity or action. They are generally easier to capture, measure and assess, and are often (though 
not always) immediate to short-term in nature. In Figure 1, they are in the upper left, and include safety, vehicle 
operations, energy/emissions, and personal mobility. The others are indirect impacts. Indirect impacts can be 
characterized as secondary, tertiary, or still further removed from the original direct impact. Indirect impacts 
summarize the broader effects of the individual direct impacts and are produced as the result of a path/chain of 
impacts, often with complex interactions and external factors. They are typically more difficult to measure and 
are longer than the time horizon of a field test.5 

The following Framework was presented in several public forums since inception, including: the 2015, 2016, 
and 2017 Automated Vehicles Symposiums; the 2016 Transportation Research Board Annual Meeting; the 
2016 SAE Government-Industry Meeting; the 2016 FOT-Net Data Workshop in Leeds, United Kingdom; the 
November 2016 SIP-adus meeting in Tokyo, Japan; and the April 2017 Connected and Automated Driving 
Conference in Brussels, Germany. Based on feedback received at these and other venues, a new impact 
area, Public Health, was added, and several other impact areas were renamed.  

                                                      
5 This explanation is inspired by that of direct and indirect environmental impacts of road development in (World Bank, 
1997) 
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Figure 1:  Automated Vehicle Benefits Framework 

In Figure 1, forward links are represented in green arrows, these impacts are those in which short term 
changes in an impact area affect longer term changes in another impact area. For example, a change in 
personal mobility, such as an increase or decrease in shorter walking trips will overtime affect the longer term 
impacts of public health. Feedback links are represented, below, in brown, these impacts are those in which 
more holistic or wider reaching changes in impacts affect shorter term and more localized changes in other 
impact areas. For example, a change in land use and zoning policy will affect the options available for travelers 
to make personal mobility choices. Finally, those links going in both directions are in black and denote a mutual 
impact relationship. 

1.3.1  Direct Impacts 
Direct Impacts are those that can be measured in a Field Operational Test (FOT). They then can be scaled up 
to a regional or national level, and can lead to indirect impacts. For example, a FOT can measure driving 
conflicts (Safety); driver/traveler behavior, car following, and intersection performance (Vehicle Operations); 
energy consumption and tailpipe emissions (Energy / Emissions); and the comfort of the user or the user’s 
ability to multi-task while in the vehicle (Personal Mobility). FOTs can also provide insights into the 
infrastructure requirements of an automation application. In this section, we describe the impact areas, and 
propose key performance indicators (KPIs) for measuring the impacts.  

The below impact areas are examples of what should be considered in the design of a FOT. Note that 
specialized use cases, such as truck platooning, may require a unique set of measures not applicable to other 
FOTs (e.g., number of platoons formed, what share of the vehicle km/miles was driven as part of a platoon).  

Response of drivers and other road users: The response of users to the system is not a benefit or dis-
benefit by itself (and is therefore not included in Figure 1), but it is an important impact area that will affect both 
the direct and indirect benefits. How do the vehicle occupants or other road users respond to the automation 
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application? For driver assistance systems, one question is whether the drivers use the system, on which kind 
of journeys or environments and in which kind of circumstances, and if relevant, what parameters they choose 
(e.g., car following distance). The driver’s degree of engagement with the driving task is also relevant (e.g., is 
the driver treating a Level 2 system as though it is a Level 4 system?). For applications operating in mixed 
traffic environments, the behavior of other road users (e.g., drivers, pedestrians, bicyclists) is also relevant. 
KPIs will depend on the application being deployed, and may include: 

• Driver / vehicle occupant characteristics (age, gender, driving license status) 
• Whether the driver uses the automated driving (AD) system 
• Degree of engagement with the driving task 
• In-car activity (secondary tasks when driving, primary activities when not driving) 
• Conflicts created by the driver 
• Conflicts created by other road users (e.g., pedestrian stepping in front of an AV) 

Vehicle Operations: Vehicle operations include acceleration, deceleration, lane keeping, car following, lane 
changing, and gap acceptance which all affect road (network) capacity. Relevant automation applications 
encompass those which provide longitudinal and/or lateral control with respect to the road and other vehicles. 
KPIs include: 

• Speed variation during constant speed travel (relevant to car-following) 
• Lateral position variation (relevant to lane-keeping and to aerodynamics for platooning) 
• Use of indicator signal 
• Normal longitudinal acceleration and deceleration 
• Lateral acceleration (around curves) 
• Emergency deceleration 
• Jerk (rate of change in acceleration; relevant to passenger comfort) 
• Car following performance (distance, time-headway, variation) 
• Gap-acceptance at intersections or in lane changes 
• Transfer of control between operator and vehicle (turning system on/off, manual overrule) 

Safety: Safety is measured as fatalities, injuries, and property damage for vehicle occupants and other road 
users. Other road users may include pedestrians, bicyclists, slow-moving vehicles, construction workers, and 
first responders. Nearly all AV applications, ranging from SAE Level 1 collision avoidance systems to SAE 
Level 5 self-driving vehicles, have potential safety impacts. A challenge with developing safety assessments for 
AVs is that actual crashes are rare events; therefore, proxy measures are often used. These measures may 
include selected traffic violations, instances where a human driver must take control of the vehicle, exposure to 
near-crash situations, and responses to near-crash situations. KPIs will be normalized to vehicle-km driven or 
vehicle-hours driven, and include: 

• Number and severity of crashes by type (property damage, injury, and fatality), change in number 
of crashes (%) 

• Number of conflicts encountered where time-to-collision (TTC) is less than a pre-determined 
threshold  

• TTC at brake onset 
• Minimum TTC (shortest TTC observed during a braking event) 
• Instances with hard braking (high deceleration) 
• Number of instances where the driver must take manual control 
• False positives – instances where the vehicle takes unnecessary collision avoidance action 
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• False negatives – instances where the vehicle fails to take necessary action. These may be 
significant, especially in unfavorable operating conditions such as those involving reduced 
visibility.  

• Selected traffic violations6 

Energy / Environment: The energy and emissions category includes both the energy consumption of the 
vehicle through a driving cycle, and tailpipe emissions of pollutants including greenhouse gases. The direct 
energy/emissions impacts come from the change in the driving cycle. Changes in vehicle propulsion (e.g., 
electric vehicles) may also have a significant effect on tailpipe emissions. KPIs include: 

• Vehicle energy consumption (kWh, litres / 100 km, gallons/mile or electric equivalent) 
• Personal energy consumption (kWh / person-mile and kWh/ person) 
• Total fossil energy (gasoline, diesel, CNG, LNG) consumption from highway transportation 
• Noise levels along roads (in dB) 
• Tailpipe7 carbon dioxide (CO2) emissions 

o Total 
o Per person 
o Per vehicle-mile 

• Tailpipe criteria pollutant8 emissions 

o Total 
o Per person 
o Per vehicle-mile 

 
Personal Mobility: Mobility from the perspective of a user includes journey quality (comfort, use potential of 
in-vehicle time), travel time, cost, and whether the travel option is available (e.g., a non-motorist). This impact 
area also includes equity and accessibility considerations. The higher levels of automation will have the most 
significant impacts, by providing mobility for non-motorists and enabling travelers to engage in activities other 
than the driving task. These encompass first mile / last mile services and accessibility applications. Challenges 
in measuring personal mobility impacts include the variety of sub-populations who may be affected in different 
ways, and the difficulty in assessing the actual value of automation to a person based on survey data. To 
address these challenges, travel time indicators can be evaluated at the network level – rather than the 
individual level. Network efficiency is addressed in Section 1.3.2 below. KPIs for this impact area may be 
measured as user friendliness and acceptance of systems, as well as: 

• Total time spent travelling (e.g., per day)  
• User perception of travel time changes 
• Type and duration of activities when not operating the vehicle (e.g., in higher levels of 

automation)  
• Percent of time or population for which a travel option is available 
• User perceptions of quality, reliability, and comfort expressed (i.e., on a Likert scale) 

                                                      
6 Some violations may have little significance, e.g., traveling at 95 kph (59 mph) in a 90 kph (56 mph) zone, while others are 
of greater significance, e.g., passing through a red signal several seconds after it has turned red. 
7 In assessing automation benefits, it may be necessary to assume that types of fuel used by automated and non-
automated vehicles are the same, at least in the near-term. It may be beyond the scope of an FOT to assess the CO2 
emissions from electricity generation.  
8 U.S. criteria pollutants include ozone, particulate matter, carbon monoxide, nitrogen oxides, sulfur dioxide, and lead. See 
http://www.epa.gov/airquality/urbanair/  

http://www.epa.gov/airquality/urbanair/
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Cost: The production cost of an AV application is important for assessing the future business case for 
deployment and ultimate usage. Key performance indicators (KPIs) include: 

• Estimate of capital cost per vehicle for the deployed system  
• Estimate of cost of purchased AV (market price) 
• Estimate of operating cost for the deployed system (per vehicle-hour or per vehicle-km) 
• Estimate of changes in infrastructure costs (passed on via taxes) 

1.3.2  Indirect Impacts 
In assessing indirect impacts, note that fleet composition and service offerings might change. For example:  

• Better crash avoidance may enable the use of lighter-weight vehicles (e.g., material and energy 
use or emissions) and prevent crash-related congestion (e.g., network efficiency) 

• The advanced control systems used for automation may also contribute to electrification (e.g., 
energy use and emissions) 

• If there is no human driver, the layout of the vehicle might change (e.g., energy use) 
• Without the labor cost of a human driver, it may become economical to use smaller vehicles for 

both trucking and transit (e.g., energy use and network efficiency).  

Other indirect impacts that may be of concern are the impacts on different stakeholders of the transportation 
industry, such as non-motorists and professional drivers. 

Network Efficiency:  Network efficiency refers to lane, link, and intersection capacity and throughput in a 
regional transport network. It also refers to travel time and travel time reliability. Improved safety may improve 
network efficiency via reduced incident delay. Changes in vehicle operations (e.g., car following) will also affect 
network efficiency via changes in car following distance, merge behavior and gap acceptance. Changes in 
transport modes or mileage driven by AVs will also affect network efficiency. KPIs include the following, 
depending on the level of detail desired: 

• At the road segment level: 
o Capacity at design speed 
o Maximum capacity  
o Free flow speed 
o Median speed 
o 5th percentile speed - addresses “worst case” reliability 

• For an intersection approach 

o Vehicles per hour through a particular intersection approach (throughput), normalized to 
number of lanes and proportion of green time. 

• For a corridor 

o Average travel time (minutes) 
o 95th percentile travel time (minutes). This measure addresses travel time reliability. 

• For a region 

o Total number of vehicle trips (used for normalization) 
o Total travel distance (used for normalization) 
o Total travel time  
o Average trip duration 
o Average trip length 
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o Average travel speed 
o Total travel delay 

 
Travel Behavior: A traveler may respond to AV options, including new service offerings, by changing travel 
behavior. There may be more or fewer trips. Modes, routes, and destinations may change. Higher level 
automation applications that have a significant effect on personal mobility or labor could have a significant 
effect on travel behavior. KPIs include: 

• Number and type of person and vehicle trips  
• Share of transport modes (modal split)  
• Share of road types used 
• Total person and vehicle miles/kms travelled 
• Network-level travel time savings 

Asset Management: Automation may affect infrastructure assets required in several ways, though significant 
uncertainty still remains in this area. Because of this uncertainty, identifying specific indicators is difficult, but 
the following examples suggest some areas in which infrastructure assets may be affected: 

• Number of lanes and lane widths 
• Use of hard shoulder (for hard-shoulder running or as emergency stop area for mal-functioning 

AVs) 
• V2I infrastructure used by automation   
• Size and weight implications of changed fleet composition 
• Spacing of heavy vehicles, which may affect bridge deterioration 
• Effect of travel behavior changes on trip making. If travelers respond to automation by making 

more trips, more road capacity may be needed. On the other hand, if automation leads to greater 
use of shared, rather than owned, vehicles, the infrastructure required for parking may be 
reduced. Changes in trip making may affect the assets required.  

Public Health: Automation may impact the health (physical and mental) of individuals and entire communities 
via safety, air pollution, amount of walking and bicycling, as well as access to medical care, food, employment, 
education, and recreation. KPIs include: 

• Concentrations of air pollutants as listed above under direct impacts) 
• Quality-adjusted life years 
• Modal share and total mileage travelled (kms) by active modes of transportation 
• Perception of safety and comfort of vulnerable road users  

Land Use: Automation may affect the use of land for transport functions (e.g., parking, road geometry). Longer 
term land use changes may include community planning i.e. location and density of housing, road network 
design, employment, and recreation. The number of factors that contribute to long-term land use changes 
makes distinguishing the changes contributed by automation a particular challenge. Additional research in this 
area would be required to establish meaningful KPIs.  

Socio-Economic Impacts: Improved safety, use of time, freight movement, travel options (for motorists and 
non-motorists), public health, land use, and effects of changed emissions (including climate change) will have 
longer-term economic impacts. Automation may also have substantial impacts on labor markets and 
industries. More research is needed; however, preliminary KPIs include the following: 

• Gross Domestic Product: total, per capita, and per hour worked 
• Total factor productivity and multifactor productivity estimates 
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• Work time lost from traffic crashes (hours per year, overall and per capita; monetary value) 
• Work time lost from illnesses related to air pollution  
• Work time gained due to ability to multitask while traveling 
• Labor force participation rate – overall and for non-drivers. 
• Job losses for professional drivers 

1.4 Sources of Uncertainty for AV Impacts 
The sources of uncertainty surrounding AVs can be classified in several ways. (Jette, Perlman, & Santalucia, 
2017) group the key factors affecting deployment into supply-side, demand-side and governance. Following 
the example of (Srinivasan, Smith, & Milakis, 2016), this report focuses on subsets of these: technology, policy, 
and user attitudes and behavior (abbreviated in this document as user response). Some of the specific factors 
below are adapted from (Srinivasan et al., 2016). 

 

 

Figure 2:  Uncertainties of AVs 
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Technological factors include those that affect the ODD, and factors that affect cost. Factors that affect the 
ODD include: 

• Sensor and control system performance 
• The degree to which ad hoc communications (e.g., Wi-Fi, DSRC, 4G, 5G) will be required for 

successful deployment 
• The degree to which vehicle sensor, processing and control systems will be able to handle 

unexpected situations  
• Performance of the vehicles in mixed traffic, and effect on safety and road capacity 

Factors that affect cost include: 

• Capability and ease of vehicle systems maintenance over time 
• Functionality to ensure AV hardware and software security 
• The complexity of design and manufacturing of sensors, processing and control 

The outcomes of the technology factors will impact the extent of the ODD for Level 4 vehicles, but will also 
influence the cost of the vehicles, as well as the relative desirability of shared versus privately owned vehicles 
(due to maintenance needs, and possible rapid obsolescence of the sensors and control systems). 

Policy factors include legislation/legal structure, risk assessment, the cost structure and the physical space 
provided for AVs. 

Legislative and legal elements include:  

• Permission to test on public roads 
• Permission to operate on public roads 

• Liability regimes 
• Data privacy policies 
• Interoperability: the extent to which AV systems are integrated to permit smooth travel across 

jurisdictional boundaries 
• Requirements to share data on testing among vehicle manufacturers and operators 
• Vehicle equipment requirements. There may be additional requirements for heavy vehicles 

operating in platoons.  

Risk assessment elements include: 

• Data protection rules 
• Security requirements 

Cost structure elements include: 

• Incentives for (or against) adoption of automated vehicles; shared vehicles 
• User cost structures for vehicle ownership and use (purchase, insurance, registration, fuel, etc.) 

Finally, elements of physical space include: 

• Allocation of public right-of-way for legacy vehicles, automated vehicles, transit, bicycling, walking 
and parking 

• Infrastructure decisions to accommodate automation and other modes 
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The outcomes of these policy factors will affect how and to what extent AVs are adopted and used. They will 
also affect technological development and the timing of market launch because they affect the business 
model; if policies increase or decrease demand, there will be more or less incentive for OEMs, electronics 
developers and systems integrators to focus on AV technology. 

User response factors include: 

Value and tradeoffs elements include: 

• Attractiveness of multitasking (i.e., being able to do something other than keep one’s attention on 
the road) 

• Value-of-travel-time in the multitasking environment 
• Willingness to share data on travel patterns (to enable delivery of shared vehicle services) 
• Willingness to pay (WTP) for marginal level of service improvements when there are more 

services at more price points than are available today (e.g., shared vehicles available to more 
people; different sizes of shared vehicle; shared ride vs. private ride in shared vehicle; 
conventional fixed-route public transit; non-motorized modes; etc.) (following (Chase, 2014)) 

Desire to drive elements include: 

• Willingness of users to ride in automated vehicles (e.g., factors related to discomfort around there 
being no human driver) 

• Willingness to ‘cede control’ (Srinivasan et al., 2016) in driving or routing (e.g., factors relating to 
enjoying the process of driving) 

• Maintenance of driving skills where Level 4 automation is available in some places 

Mixed environment elements include: 

• Behavior of other road users (non-AVs; non-motorized) in the presence of automated vehicles 
• Interactions with vulnerable road users 

Vehicle ownership and use pattern elements include: 

• Willingness to use shared vehicles rather than owned vehicles 
• Willingness to share rides with other users 

User demand will guide the rate of adoption of AVs, including both the rate of purchase of privately owned 
vehicles (POVs) and shared AVs, the rate of transition of VMT from human-operated vehicles to AVs, and the 
future of other modes, such as non-motorized modes and traditional public transit.  

The uncertainties were presented in a poster at the 2017 Automated Vehicle Symposium (Smith et al., 2017). 
This poster was also shared informally in July of 2017 during the International System Dynamics Conference 
(ISDC) in Cambridge, MA. One commenter there suggested adding the impact of a potential well-publicized 
negative incident to the list of uncertainties, especially when considering these uncertainties from the 
perspective of potential ‘tipping points’ in a system dynamics model. 

These factors will affect AV launch and adoption in several ways. For example, the scope of the operational 
design domain for driverless operation depends on technology, and will affect how users will respond. The cost 
of automated vehicles will depend on technology and policy factors. The rate of AV adoption depends on 
technology, users, and policy. It will also be affect, and be affected by, AV cost. The decision to share AVs will 
depend on technology, user and policy factors, as well as the cost of AVs. Finally, policy factors may 
encourage or discourage technology development.  
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With the uncertainty surrounding automated vehicles, a further look at each factor was deemed necessary. 
The next chapter (section 2.5) explores some of the uncertainties relating to travel behavior.  

1.5 Remainder of this Report 
The following chapters detail our research on selected impact areas: travel behavior, safety, vehicle 
operations, and energy/emissions. Each of these chapters presents a detailed description of our modeling 
efforts to date. The report concludes with a brief discussion on our initial concepts around the impact area 
socio-economics (economy and jobs).  



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Benefits Estimation Model for Automated Vehicle Operations: Phase Two Final Report |  14 

Chapter 2   Travel Behavior 
Travelers are likely to respond to the mobility impacts of AVs by changing their behavior. There is an entire field 
of study on the modeling of demand for transportation. An assessment of the user response to automation 
found below draws on previous efforts in the field of transportation demand modeling. This chapter is 
structured as follows: 

• Section 2.1 provides a short introduction to choice modeling as currently practiced 
• Section 2.2 presents current practice in vehicle ownership models 
• Section 2.3 presents current practice in mode choice models 
• Section 2.4 discusses potential automated vehicle impacts 

It is important to note that the project is currently focusing on passenger transportation, with the “user” being an 
individual traveler or household. The comments in this chapter apply to both activity-based and trip-based 
models. Given that higher levels of automation will have far-reaching impacts on travel patterns, it is likely that 
activity-based or agent-based models will be required to ensure sufficient fidelity to traveler behavior.  

2.1 Basics of Choice Modeling 
This section presents the basics of disaggregate mode choice modeling, adapted from the work of 
(Koppelman & Bhat, 2006).   

There is a decision-maker, an individual traveler or a household. In the long term, the decision-maker decides 
whether to purchase an automobile. In the short term, the decision-maker decides how to make a trip: by 
automobile, public transit, or another way.  

Important attributes of the decision-maker, usually considered in models, include: 

• Home location 
• Work location 
• Household income 
• Household car-ownership, related to the number of workers and number of adults in the 

household. This last attribute may be the output of a car ownership model, or an input to a mode 
choice model.  

Additional attributes of an individual decision-maker include sex, age, and employment status.  

In a mode choice model, transportation alternatives may include private automobile, bus, train, ferry, bicycling, 
and walking. The alternatives also have attributes. For a travel mode on a particular trip, these attributes may 
include: 

• Travel time (in and out of the vehicle) 
• Travel cost 
• Walk access distance 
• Transfers required 
• Crowding; seat availability 
• Frequency of service 
• Reliability of service 
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The attributes of the decision-maker may also interact with the attributes of alternative transportation modes. 
For example, a high-income decision-maker may be less sensitive to increases in travel cost.  

In order to predict mode choice, the decision-rule is that of utility maximization, Uit =Vit + εit, where      

• Uit   is the true utility for alternative i to decision-maker t. The decision-maker chooses the 

alternative that maximizes Uit  . 

• Vit is the deterministic portion of the utility for alternative i to decision-maker t. It is based on 
observable attributes, such as travel time.  

• εit  is the error term, the portion of the utility that is not observed. This is drawn from a standard 
extreme value (Gumbel) distribution. The error terms are assumed to be independent and 
identically distributed across the alternatives.  

In a multinomial-logit formulation, the probability of choosing alternative i is given as  

Pr(i) = exp(Vi) / Σ (exp(Vj))  (summation over all alternatives j) 

2.1.1  Some Examples 

Example 1: Auto / Bus 

Consider the choice between automobile and bus, where the observed attributes include travel time and cost. 
Furthermore, we have estimated the following coefficients for travel time and cost: 

• Travel time (minutes): -0.03   (negative because more travel time reduces the utility) 
• Cost (dollars): -0.6 

The travel time is 20 minutes for the automobile, and 25 minutes for the bus. Cost for each is $2. Then 

Vauto =  -1.8 =  -0.03 * 20 minutes  + -0.6 * 2 dollars,   and  

Vbus =  -1.95 =  -0.03 * 25 minutes  + -0.6 * 2 dollars,    

The choice probabilities are  

Pr(auto) = 0.54 = exp(-1.8) / (exp(-1.8) + exp(-1.95)) 
Pr(bus) = 0.46 = exp(-1.95) / (exp(-1.8) + exp(-1.95)) 

Example 2: Add a second bus 

Now, imagine that a second bus (a blue bus) alternative has been added with a travel time of 26 minutes. 
The second bus’s pick-up point is different from that of the original bus, thus travelers cannot simply wait 
for the first bus that arrives; they must choose to wait for one or the other. Otherwise, its characteristics 
are the same as for the original bus. The deterministic utility and choice probability calculations are then 
as follows: 
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Vauto =  -1.8 =  -0.03 * 20 minutes  + -0.6 * 2 dollars,   

Vbus =  -1.95 =  -0.03 * 25 minutes  + -0.6 * 2 dollars,    

VblueBus =  -1.98 =  -0.03 * 26 minutes  + -0.6 * 2 dollars  
    
Pr(auto) = 0.37 = exp(-1.8) / (exp(-1.8) + exp(-1.95) + exp(-1.98)) 
Pr(bus) = 0.32 = exp(-1.95) / (exp(-1.8) + exp(-1.95) + exp(-1.98)) 
Pr(blueBus) = 0.31 = exp(-1.98) / (exp(-1.8) + exp(-1.95) + exp(-1.98)) 
 
This is, of course, a nonsensical result. Given that the unobserved attributes of the blue bus are the same 
as those for the original bus, we would expect the new bus to draw riders from the original bus, and not 
from the auto mode. It comes from the violation of the assumption that the error term is independent 
between these two alternatives. For more information, readers are invited to review (Koppelman & Bhat, 
2006), or to use their favorite search engine to look for “Red Bus Blue Bus paradox” or ”Independence of 
Irrelevant Alternatives.”  (IIA) 

Example 3: Nested Logit 

 
Modelers typically deal with the IIA problem by grouping similar alternatives into nests, and calculating the 
choice probabilities for each nest, and then rolling up to an overall result. The log sum parameter µ is 
greater than 0 and less than 1, and indicates the dissimilarity within each nest.  

 

Figure 3:  Nested Logit Example 

 
Within the nest: 
Pr(i) = exp(Vi / µ) / Σ (exp(Vj / µ))  (summation over all alternatives j within a nest) 

Vtransit = ln(Σ (exp(Vj / µ))   (This is the log sum, the overall utility of the alternatives within the nest.)  

Choice probabilities for the top level nest are calculated as they were before.  

Using these equations, the deterministic utilities (V) and choice probabilities (Pr) under various values of 
µ are as follows: 
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Table 1:  Nested logit example 

 µ = 0.01 µ = 0.5 µ = 0.99 
Alternative V Pr V Pr V Pr 
Auto -1.8 0.54 -1.8 0.45 -1.8 0.37 
Transit -1.95 0.46 -1.62 0.54 -1.27 0.63 
Bus -1.95 0.44 -1.95 0.28 -1.95 0.32 
Blue Bus -1.98 0.02 -1.98 0.26 -1.98 0.31 

 
When µ is small, the new type of bus has little effect on the mode choice. The probability of choosing 
transit is almost the same as that of choosing the bus in the auto-bus choice in Example 1. When µ is 
large, it indicates that the 2 types of buses are dissimilar in their unobserved attributes, making their 
combination more attractive than each would be individually. The choice probabilities are similar to those 
in Example 2.  

These concepts are important to automation in two ways. First, the log sum provides an overall expected 
utility of a set of alternatives. By estimating the difference in log sums between a set of alternatives with 
automation, and without automation, one can begin to understand, in a quantitative way, the user benefits 
from having automation options.  

Second, automation is likely to lead to a number of new travel choices: private AVs, shared AVs, shared 
rides in AVs, and so on. As the number of travel choices increases, it becomes more important to 
understand their similarities and differences from the user perspective (the unobserved attributes), so that 
their user response impacts may be correctly modeled.  

2.2 Vehicle Ownership Models – Current Practice 
Ownership of a privately owned vehicle (POV) can be viewed as a rent or buy decision. If the decision-maker 
is seeking to maximize utility, factors that are likely to enter the vehicle ownership decision include those 
shown in Table 2. 

Table 2: Factors affecting vehicle ownership 

Factors increasing the likelihood of vehicle 
ownership 

Factors reducing the likelihood of vehicle 
ownership 

High disposable income High capital cost for the vehicle 
High number of trips where POV is the best option Low number of trips where POV is the best option 
Vehicle is needed to store goods (tools, materials, 
etc.) 

High walk-bike availability 

Owners can receive income by sharing their 
vehicles 

High transit availability 

Alternatives (transit, shared vehicle) have low 
availability 

High shared vehicle availability 

Alternatives (transit, shared vehicle) have high cost High cost and inconvenience of parking 
 
Most logit models that predict vehicle ownership do not explicitly consider the availability of shared vehicles. 
Rather, the individual decision to purchase or not to purchase a car comes from the comparative utility of trips 
with and without a car. This utility, however, could be affected by the availability of a shared vehicle or shared 
ride. 
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In a report on the state-of-the-practice in vehicle availability modeling (as of 20 years ago), (Cambridge 
Systematics, 1997) described the relationship between vehicle ownership, trip making and mode choice. The 
output is vehicles per household. Typical inputs included: 

• Persons per household 
• Workers per household 
• Household income 
• A variable representing the type of land use at the household (urban area, single/multi-family, 

etc.) 

In 1997, the use of accessibility measures and the quality of the pedestrian environment was considered to be 
advanced practice. Shared vehicles or rides are not mentioned.  

15 years later, NCHRP report 716 (NCHRP, 2012) provided an overview of the state-of-practice in all areas of 
demand modeling, including vehicle availability. It presented the following examples of decision variables: 

• Household characteristics: 
o Persons per household; 
o Workers per household; 
o Household income; and 
o Single or multifamily dwelling. 

• Geographic (zone) characteristics: 
o Urban area type; 
o Residential and/or commercial density; and 
o Pedestrian environment. 

• Transportation accessibility: 
o Accessibility via highway; 
o Accessibility via transit; and 
o Accessibility via walking/bicycling. 

With vehicle availability modeling, households can be segmented into vehicle availability levels. Examples are: 

• No vehicles 
• Fewer vehicles than drivers 
• Equal number of vehicles and drivers 

We also reviewed auto ownership models from two MPOs: Puget Sound Regional Council and Atlanta 
Regional Commission.  

Puget Sound Regional Council (Bowman, Bradley, & Childress, 2015) presented an auto ownership model 
that included the following variables: 

• Number of drivers in the household 
• Whether there are at least as many cars as workers 
• Part-time workers per driver 
• Elderly adults per driver 
• University students per driver 
• Driving age children per driver 
• Children under 5 per driver 
• Household income category  (less than $15K/year, $15-$30K, $30-75K, more than $75K) 
• Log distance to transit stop 
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• Number of transit stops in the household buffer (near the household) 
• Tour mode choice log sum for work travel with and without auto  - this is a measure of 

accessibility (transit quality), with and without automobile 
• Tour mode choice log sum with and without auto for students 
• Distance to nearest transit stop less than 0.5 miles 
• Log of food, service, retail and residential employment density 

The Atlanta Regional Commission activity-based model specification (Atlanta Regional Commission, 2012) 
had similar explanatory variables, including 

• Household size and composition 
• Income 
• Parking cost and density in residential zone 
• Peak mode choice log sums to work for all workers 
• Destination choice log sum for residential zone 

Although car sharing availability has not been explicitly considered in auto ownership models, a number of 
variables in these models are strongly correlated to car sharing. For example, car sharing tends to be more 
prevalent in places with high parking cost, high density, and high transit accessibility.  

Today, a fundamental limitation with car sharing is that of access to the vehicles. Since the vehicles cannot 
deliver themselves, they need to be located where there are high concentrations of potential users: transit 
hubs, densely populated residential neighborhoods, universities, or employment centers. As a result, although 
car sharing is experiencing rapid growth, it is still a niche market. The 1.1 million car share members 
(Shaheen, Chan, Bansal, & Cohen, 2015) in the U.S. are only a small fraction of the adult urban population.  

Other research, cited in (Shaheen et al., 2015) points to a significant effect of car-sharing on vehicle ownership 
and usage and, consequentially, on mode share. For a household, the availability of a car-share vehicle 
provides a viable option for those trips that require an automobile, enabling fewer vehicles to be owned. On the 
other hand, the higher marginal cost of using the car share vehicle, as opposed to an owned vehicle, make it 
less likely that the car share vehicle will be used for trips that can be handled by walking, bicycling, or public 
transit.  

2.3 Mode Choice 
The typical state-of-practice is to use a nested logit model for mode choice, often with separate coefficients for 
differing trip types. For example, a home-to-work trip might use different coefficients than a home-to-shopping 
trip. Observed attributes of the choices that commonly appear include: 

• An alternative-specific constant, used to adjust model results to better reflect observed choices 
• In vehicle travel time (IVTT). In New Starts guidance, FTA has indicated that “compelling 

evidence” is needed to use a coefficient of IVTT that falls outside the range of -0.02 to -0.03, 
when IVTT is measured in minutes (NCHRP Report 716) 

• Out of vehicle travel time (OVTT). In New Starts guidance, FTA has indicated that “compelling 
evidence” is needed to use a coefficient for OVTT that is not two to three times larger than the 
coefficient for IVTT (NCHRP Report 716). OVTT includes waiting, transfers and walking to and 
from the vehicle.  

• Cost, which is the out-of-pocket cost (e.g., transit fare or fuel for an automobile) 
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In a number of models, OVTT is split into its components. It is commonly recognized that transfers between 
vehicles are disliked by riders, and may have a penalty, either explicitly, or via the OVTT parameter.  

Where a model does not use a particular coefficient, it is marked n/a in the table.  

Table 3 adapted from Table 4.8 of (NCHRP, 2012), illustrates examples of coefficients used in MPO travel 
demand models. The time variables are in minutes and the cost variables are in dollars in this table. Where a 
model does not use a particular coefficient, it is marked n/a in the table.  

Table 3:  Examples of mode choice coefficients 

Model IVTT OVTT Walk Time First Wait Time Transfer Time Cost 
A -0.021 n/a -0.054 -0.0989 -0.098 -0.31 
B -0.030 -0.075 n/a n/a n/a -0.43 
C -0.036 -0.053 n/a n/a n/a -0.77 
D -0.019 n/a -0.058 -0.081 -0.04 -0.72 
E -0.025 -0.05 n/a n/a n/a -0.25 
F -0.044 -0.088 n/a n/a n/a -0.67 
G -0.028 -0.065 n/a n/a n/a -0.55 
H -0.033 n/a -0.093 -0.038 -0.038 -0.21 
I -0.025 -0.05 n/a n/a n/a -0.510 

 

2.4 Potential Automated Vehicle Impacts 
Automated vehicles may affect both vehicle ownership and vehicle use. 

2.4.1  Vehicle Ownership 
The impact on vehicle ownership rates is unknown and will be linked to the availability of automated vehicles? 
If AVs make shared vehicle options more widely available and more attractive, it may become less necessary 
to own a personal vehicle. On the other hand, automation may make “driving” more convenient and encourage 
vehicle ownership. The numerous predicted impacts are summarized in Table 4:  

 

                                                      
9 Model A uses a first wait time stratified by the first 7 minutes and beyond. The coefficient shown is for the first 7 
minutes; the coefficient for beyond 7 minutes is –0.023. 
10 Model I has a separate coefficient for auto parking cost, which is –0.25; the coefficient shown is for all other auto 
operating and transit costs. 
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Table 4: Some ways in which AVs could reduce, not affect, or increase vehicle ownership rates 

AVs could reduce vehicle 
ownership 

AVs would not affect vehicle 
ownership 

AVs could increase vehicle ownership 

• Because shared cars can 
deliver themselves to the 
passenger’s door: 
o Car sharing may become 

available in less dense 
areas 

o Car sharing may become 
more convenient 
everywhere 

• Capital cost of AVs may be 
higher than human-driven 
vehicles (at least initially), thus 
encouraging sharing 

• Some vehicle users – such 
as home improvement 
contractors – store many 
items in their vehicles and 
cannot practically share 
vehicles 

• Persons who currently cannot hold 
a driver’s license (certain 
disabilities; age (young or old); etc.) 
could have their own vehicles 

• Persons without convenient parking 
could own a vehicle and send it to 
park itself elsewhere 
 

 
Note, however, that the possibilities in the last column may also encourage the use of shared AVs, and thus 
increase vehicle use but not ownership rates of dedicated vehicles.  

These and other factors are presented on a diagram of impact linkages, as shown in Figure 4. This approach 
is inspired by (Milakis, van Arem, & van Wee, 2017).11  Green arrows, with plus signs, indicate that an increase 
in the item at the origin of the arrow would tend to lead to an increase in the item at the arrow’s destination. 
Red arrows, with minus signs, indicate instead a general negative causation. Identifying these impact linkages 
at a high level are an initial step towards further more-detailed analysis using system dynamics principles.  
 

 
 

                                                      
11 That paper includes a very large impact linkage diagram showing first, second and third-order impacts of automated 
vehicles, rather than the more detailed diagrams of part of the system, as shown here. The terminology of ‘zero time-cost’ in 
our diagram comes from (Milakis, van Arem, & van Wee, 2017) 
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Figure 4: Impact linkage diagram for privately owned vehicle (POV) purchases 

2.4.2  Vehicle Use 
 
Table 5 summarizes ways in which AVs could affect vehicle use – either in terms of number of trips, or VMT. It 
is important to note that we assume that L4 or L5 AVs are capable of travelling with no human on-board – the 
so-called ‘zero-occupant’ trip. 
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Table 5: Some ways in which AVs could reduce, not affect, or increase vehicle use 

AVs could reduce vehicle use AVs might not affect vehicle use AVs could increase vehicle use 
• Most car-sharing business

models offer a higher
marginal cost and lower
fixed cost than car-
ownership models. If AVs
are primarily furnished via a
car-sharing business model,
overall vehicle use might be
reduced. This is especially
true if trips are shared, with
several riders in each
vehicle.

• Some zero-occupant trips
would not affect total VMT
much – for example, when a
shared AV drives itself from
drop-off of one passenger to
the requested pick-up point of
the next. This is equivalent to
a taxi driver ‘deadheading’ to
pick up the next fare.
Although total trips in shared
vehicles might increase, the
possibility of having optimal
dispatch algorithms could
result in fewer overall miles
driven than when each driver
has a dedicated vehicle.

• Time cost of vehicle operation
decreases when cars can ‘run errands’
themselves - zero-occupant trips

o For example, a contractor could
buy a dedicated AV, then send it
to pick up supplies while
continuing to work

o AV owners could direct their
vehicles to park in lower-price
parking on the outskirts of the
city, then summon them to return
for pick-up

• Persons who currently cannot hold a
driver’s license could travel more
conveniently, without depending on a
friend, relative, bus or paratransit
service

Figure 5 shows the impact linkage diagram for vehicle use. 

Figure 5:  Potential effects of AVs on vehicle use 
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2.4.3  Resulting Impacts on Travel Behavior 
The potential impacts of AVs on travel behavior, and thus vehicle miles traveled, can be summarized as 
follows.  

At the lower levels of automation, where a driver is still required, or where a level 4 automated vehicle is 
operating on a fixed route, the impacts are likely to be modest. “Driving” may become more convenient, thus 
reducing the value of IVTT for those using the vehicles. New automated transit options may become 
economically feasible.  

When automation reaches the point of technological and policy development where vehicles can reposition 
themselves without a driver, the impacts could be far-reaching. One could envision three scenarios. They are 
not mutually exclusive.  

1. Vehicles continue to be privately owned and not shared except within a household, much as they 
are today. The marginal cost per trip is still low, as it is today for a POV. If the occupant of the 
vehicle can engage in tasks other than driving, the value of IVTT decreases. Furthermore, if a 
vehicle can reposition to an area where parking is inexpensive, the disincentive of high parking 
costs at some destinations goes away. Fewer vehicles may be owned, as a single vehicle can 
more easily serve multiple members of a household via self-repositioning12 however, one would 
expect VMT to increase under this scenario.  
 

2. Vehicles are shared, but trips are not shared (except within a household). This is similar to the 
car-sharing that exists today, with the important difference that vehicles are able to deliver 
themselves to users. There is a moderate cost per trip (because the capital cost of the vehicle 
has to be covered); therefore transit, walking, and biking options may become more attractive for 
short trips. Vehicle utilization will be higher; therefore fewer vehicles will be needed, which will 
reduce the needed space for parking. If vehicles are powered by internal combustion engines, 
there will be fewer cold-starts, with a beneficial effect on emissions. The overall effect on VMT is 
unclear: there will be zero-occupant trips, but the higher marginal cost per trip (compared with 
privately owned vehicles), which may encourage more walking, biking, and transit trips.  
 

3. Vehicles and trips are shared. This is parallel to some of the shared ride services (e.g., UberPool, 
Lyft Line) that exist today. Compared to the previous scenario, the cost per trip is slightly lower, 
but the service is less convenient (the rider is sharing the vehicle with strangers and may need to 
detour slightly for their pick-ups and drop-offs). Overall effect on VMT will likely be a decrease.  

2.5 Impact Mechanisms  
Our team has begun developing detailed ‘maps’ of the interactions shown in Figure 2. We believe that two 
important questions relate to vehicle sharing and trip sharing: 

• Will automated vehicles be individually owned, or accessed via a shared-ownership model, much 
as car-sharing services work today? 

• Will trips be shared; that is, will strangers share a ride when they have compatible origins and 
destinations? 

                                                      
12 see (Schoettle & Sivak, 2015) 
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Figure 6 considers the first question by focusing on the impact of several factors on the decision to purchase a 
POV13 versus to use another option: shared vehicles, transit, or non-motorized modes. In this use case, we 
assume that a shared AV can deliver itself to the rider’s trip origin (for trips beginning on roads that are within 
the vehicle’s ODD), and also take its rider to at least some destinations without the rider needing to be a 
qualified driver. Riders pay per hour (or perhaps per mile or kilometer) without a significant up-front capital 
cost.  

Figure 6 examines a few of the key factors from each of the three categories:  

• Automation technology: ability to handle the unexpected, and complexity. These are, 
respectively, the key drivers of the scope of the ODD for operation without a licensed driver, and 
of the cost of the on-board electronics required, which in turn affects overall AV capital cost. Links 
from and among these factors are shown in purple, with signs indicating the polarity. 

• Policy: incentives, cost structures, infrastructure decisions, and allocation of right of way. In order 
to analyze the effects of these sorts of policies we must evidently be more specific; for the sake of 
this example, we assume that these are policies and decisions which encourage shared fleets 
and which affect the cost and inconvenience of parking. Links from policy factors are shown in 
blue. 

• User response: willingness-to-pay in a many-option environment, willingness to use shared 
vehicles, and willingness to share rides. Links from user response factors are shown in brown. 

Feedback among the other dependent variables is shown in green (positive (reinforcing) feedback) and red 
(negative (balancing) feedback). 

                                                      
13 While the intention of Figure 6 is to show the factors influencing purchases of privately-owned AVs vs. use of shared AVs, 
many of the feedback mechanisms also apply to the decision to purchase any POV (even non-automated) in a world in 
which shared AVs are available.  
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Figure 6: Effects of key factors on purchases of POVs 

Automation technology factors: If better technology in Level 4 AVs means that they can better handle the 
unexpected and function without a licensed driver in broader ODDs, they will be able to deliver themselves to 
more trip origins. This will tend to increase their availability; this availability then increases the desirability of 
non-POV options, which in turn increases demand. Increased demand boosts availability, completing the 
positive feedback loop. If AVs require more complex technology to function, this will also tend to increase their 
cost, which could further encourage demand for shared vehicles and depress purchases of POVs.  

Policy factors: Incentives targeted towards end users of shared AVs (user-side incentives) would increase 
demand for shared vehicles, while supply-side incentives would tend to increase shared vehicle availability. 
Cost structures, infrastructure decisions and right-of-way allocation policies could (if of the types assumed 
above) all both increase the availability of shared vehicles and make parking more expensive and less 
convenient. More difficulty in parking would tend to decrease purchases of POVs, as would greater availability 
of shared vehicles. 

User response: A willingness to pay to upgrade from fixed-route transit to a shared AV on demand would tend 
to depress demand for traditional fixed-route transit, while willingness to pay to upgrade to a dedicated AV 
would boost purchases of POVs. Both increased willingness to use shared vehicles and increased willingness 
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to share rides with other passengers in an AV would increase demand for shared AVs and independently 
decrease purchase of POVs. (Does not specifically consider demand for shared rides.)  

Observations from looking at the interactions among the adoption and deployment variables themselves 
include: 

• There is a positive feedback loop for purchases of POVs; by reducing the amount of space 
available for non-motorized modes they make these other modes less desirable.  

More purchases of POVs lead to more demand for parking, which reduces the rate at which road 
space is repurposed for walking or cycling and may even lead to its return to a parking use. That 
in turn can reduce the availability of walking or biking, which would contribute to a reduction in the 
desirability of travel options without a POV. This decrease means that there would be more trips 
for which a POV is the best option; and thus, would tend to lead to an increase in purchases of 
POVs. 

• Conversely, increased demand for shared vehicles, coupled with increased availability of shared 
vehicles may also be self-reinforcing. 

This is because increased availability increases the desirability of non-POV travel options. A 
larger loop leads to the same outcome via another mechanism: that increased desirability of non-
POV options means that there are fewer trips for which POV is the best option, and that will tend 
to depress POV purchases. When fewer people own POVs there is likely to be greater demand 
for shared vehicles.  

• However, the  world of many services at many price-points (referred to as a so-called “heaven” 
scenario in (Chase, 2014) could, under certain conditions, lead to a swing back towards the “hell” 
world where each family has its own AV.  

This is because increased willingness to pay for marginal service level improvements over fixed-
route transit can lead to less demand for and then a reduction in the availability of such transit. 
That would tend to render non-POV options less desirable, leading to an increase in the portion of 
trips where a POV is the best option, and an accompanying increase in purchases of POVs.  

This exploration of the impact mechanisms suggests how a system dynamics approach could reveal 
potentially important concerns about AV adoption and deployment. Policy makers and car-sharing companies 
may need to consider whether a launch of an automated shared vehicle service in a given area is likely to 
generate enough customers to be sustainable. There may be a scenario in which demand for those shared 
AVs was strong enough to lead the local transit authority to cut fixed-route service, but not strong enough for 
the car-sharing firm to decide to keep the new service operating, at least with the level of service and prices 
that drove its initial expansion of market share. What began as an attempt to provide additional transport 
options might end up leaving residents with fewer options other than a POV. The exact inflection points in 
terms of pricing, operational level of service, etc. are clearly worth additional consideration before the new 
service launches. This sort of particular sensitivity would be hard to spot without a system dynamics approach. 

Figure 7 examines the second question introduced in this section by looking in more detail at the dynamics of 
shared AVs. The figure also links these more detailed impact linkage diagrams back to the overall societal 
outcomes shown in the Framework presented in Figure 1. It will look in more depth at a shared AV that can 
deliver itself, and considers the factors making it more or less likely that trips will be shared, as well as related 
impacts. Technology factors, such as cost, are outlined in purple. Factors relating to both technology and policy 
are outlined in dark blue. Factors relating to policy are outlined in light blue, and factors relating to user 
response are outlined in orange.  
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Figure 7: Shared AV impact linkages 

An AV that can deliver itself will significantly increase the convenience of car-sharing. This can lead to an 
expansion of the car-sharing market, with greater availability of automated shared vehicles. It may also lead to 
more households replacing privately owned with shared vehicles, thus leading to reduced demand for parking, 
which is a significant infrastructure and land use impact. (Owned vehicles are typically idle most of the time, 
while shared vehicles have higher utilization, with fewer of them needed to meet travel demand.) 14   

Greater availability of automated shared vehicles that do not need a qualified driver will provide more travel 
options for non-motorists.15 This has a number of impacts including: 

                                                      
14 Several papers have suggested that one shared vehicle could replace approximately ten owned vehicles, e.g., ((Fagnant 
& Kockelman, 2015), (OECD/International Transport Forum, 2015) 
15 This is expected particularly in areas not well served by traditional public transit. It is subject to the risks raised in the 
preceding discussion of potential reduction of travel options under certain circumstances in places in which fixed-route 
transit is currently offered. 
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• Personal mobility (non-motorists are no longer limited to often meagre transit options) 
• Public health (non-motorists may more easily access medical care and recreational activities; on 

the other hand, there may be reduced use of walking and bicycling) 
• Economy (non-motorists may more easily access jobs) 

All of these may lead to an increase in person trips, tending to increase overall VMT, which may mean greater 
congestion on the transportation network.  

Compared with non-automated car sharing, zero-occupant trips as the vehicles deliver themselves will tend to 
increase VMT partially. (The point that shared AVs may generate less VMT than POVs is outside the scope of 
Figure 7.) 

A significant difference in the cost structure between owned and shared vehicles (at least as business models 
for purchase, registration, insurance, etc. currently work in the U.S.) is that owned vehicles have a relatively 
high fixed cost (e.g., depreciation, insurance, registration fees, some maintenance), with a low marginal cost 
(e.g., fuel). This means that once the vehicle is purchased, the marginal cost of using it is low, as the purchase 
cost has already been incurred, whether or not the vehicle is used. Therefore, the owned vehicle tends to be 
used for many trips. On the other hand, a shared vehicle has a low fixed cost (typically, a $25-$100 annual 
membership fee), with a higher hourly cost of use (in the $10/hour range). This makes it more likely that the 
person who depends on a shared vehicle will use transit, walking or bicycling for trips where those modes are 
convenient. If capital costs for AVs are higher than current vehicle costs, this will also tend to increase the 
marginal cost per trip in a shared vehicle environment.  

The question of solo versus shared trips is treated in the middle of the diagram. If the marginal cost per trip is 
high, there will be an incentive for users to share trips, in order to share the cost. If more trips are shared, then 
the marginal cost per user per trip will decrease.  

Other factors that go into the use of shared AVs for shared trips include the user willingness to share trips, 
independent of the cost considerations. Will someone get into a car with a stranger? Infrastructure for sharing 
trips, such as ride-matching apps, also impacts the quantity and willingness of users to share trips.  

Finally, more shared trips will tend to decrease VMT, due to serving several travelers in each vehicle. 
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Chapter 3   Safety 
Safety should be measured using actual crash data from naturalistic baseline and treatment driving test 
conditions (i.e., drivers unassisted versus drivers assisted with advanced vehicle applications). However, when 
vehicle technology is new and not yet widespread (or even present) in the on-road fleet, actual crash data from 
real-world driving simply are not available to use because crashes have not yet occurred and cannot be 
accounted for without equipped vehicles on the roads. Moreover, crash data are rare or non-existent during the 
execution of naturalistic driving field operational tests since widespread exposure is required to ensure 
adequate crash data. The scope of field operational tests is typically limited to a few instrumented vehicles 
driven by volunteer subjects for a relatively short period of time. Nevertheless, finding a way to assess the 
safety benefits of such emerging technologies is vital to ensure that deployment provides a public benefit. 

3.1 Basic Safety Benefits Equation 
This Framework describes a methodology to incorporate driver/vehicle/system performance data from various 
sources (e.g., a non-crash driving environment such as field operational tests, objective testing, human factors 
testing, and historical crash data) into a benefits model so that potential safety benefits of advanced vehicle 
applications can be projected.  

 𝑩𝑩 = 𝑵𝑵 × 𝑬𝑬 (1) 
 Where: 

B ≡ Reduction in annual baseline target crashes in a scenario by an application 
N ≡ Annual number of baseline target crashes in a scenario 
E ≡ Crash avoidance effectiveness of an application in its target scenario 

 
Information for the annual number of baseline target crashes, N, can come from historical crashes from 
national databases or observed crashes in field operational tests. Target crashes should be tailored to specific 
ODDs in which an advanced vehicle (e.g., crash avoidance) application may apply. A recently completed task 
developed and implemented a method to determine preliminary estimates of baseline crashes for emerging 
concept automated vehicle functions (Yanagisawa, Najm, & Rau, 2017). This task will be described briefly in 
subsequent sections. The results from this study serve as the basis for providing part of the data necessary for 
estimating potential safety benefits of automated vehicles and their specific functions. The final component of 
the benefits equation requires further driver/vehicle/system performance data and research in order to 
accurately quantify benefits.  

This Framework further describes and begins the process of estimating potential safety benefits. However, 
given the current state of the US vehicle-fleet, the Framework will focus on quantifying the crash avoidance 
system effectiveness estimate, E16. This value is broken down into two safety components as described in 
Equation (2) below:   

 

                                                      
16 As noted earlier, with limited deployment of automated vehicle technologies, providing very limited number of crashes, 
surrogate measures from various sampled data sources and non-crash conflicts are used to estimate potential benefits.  

 𝑬𝑬 = 𝟏𝟏 − 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 × 𝑷𝑷 𝑷𝑷 𝑷𝑷 𝑷𝑷 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹  𝑬𝑬 𝑬𝑬𝑬𝑬 𝑬𝑬 𝑹𝑹𝑹𝑹𝑬𝑬 𝑬𝑬 (2) 
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The driving conflict17 Exposure Ratio is the ability of an advanced vehicle application to reduce the 
occurrence of conflicts in normal driving behavior (McMillan & Christiaen, 2001)   Driving conflicts correspond 
to the kinematics of target pre-crash scenarios that represent vehicle movements and orientation, as well as 
the safety-critical event immediately prior to the crash. This represents the ability of an automated vehicle to 
avoid crash conflicts in normal driving conditions (e.g., driving within the specified ODD). The crash 
Prevention Ratio is the ability of an advanced vehicle application to reduce the likelihood of a crash given that 
a vehicle enters a driving conflict (McMillan & Christiaen, 2001). This represents the automated vehicles ability 
to avoid an imminent crash through automated control or the timely transition of control from system to driver 
to successfully avoid an imminent crash.  

The individual ratios are derived from driver/vehicle/system performance data both without and with an 
advanced vehicle application, therefore the equation to estimate crash avoidance effectiveness can be 
rewritten as shown Equation (3):  

 𝑬𝑬 = 𝟏𝟏 −
𝑬𝑬𝑬𝑬𝒘𝒘 𝒘𝒘

𝑬𝑬𝑬𝑬𝒘𝒘 𝒘𝒘
×

𝑪𝑪 𝒘𝒘 𝒘𝒘

𝑪𝑪 𝒘𝒘 𝒘𝒘
 𝑹𝑹𝑹𝑹

𝑹𝑹𝑹𝑹 𝑬𝑬𝑬𝑬𝑹𝑹

𝑷𝑷 𝑹𝑹𝑹𝑹

𝑷𝑷 𝑹𝑹𝑹𝑹 𝑬𝑬𝑬𝑬𝑹𝑹
(3) 

 
EMwith ≡ Exposure Measure to a driving conflict corresponding to a target scenario with advanced vehicle 

application 
EMwithout ≡ Exposure Measure to a driving conflict corresponding to a target scenario in without advanced 

vehicle application 
CPwith ≡ Crash Probability when exposed to a driving conflict corresponding to a target scenario with 

advanced vehicle application 
CPwithout ≡ Crash Probability when exposed to a driving conflict corresponding to a target scenario without 

advanced vehicle application 
 
The available driver/vehicle/performance data with specific advanced vehicle technology (and similar 
functionality) that may apply to automated vehicle applications is relatively small. Data can come from various 
literature, field operational tests, objective testing, and human factors based experiments. Although new 
automated vehicle data is currently available, it has been relegated by the specific needs of a company and 
considered propriety and/or in its infancy, making it relatively unavailable. On the other hand, an abundance of 
research and information has been published by private industry and the USDOT on driving warning 
applications. The data sets for these driving warning applications can be used as preliminary data sources to 
exercise the benefits methodology and provide insight on data needs. Further research and collaboration on 
automated vehicles and their functionality is needed to determine the exposure to driving conflicts with 
advanced vehicle applications and the crash probability ratio within these conflicts (both with and without 
technology).  

This Framework leverages available resources and algorithms to data mine for exposure to driving conflicts 
without advanced vehicle applications (i.e., baseline) and quantify crash statistics for baseline crashes in which 
a theoretical automated vehicle can provide a safety benefit (i.e., a target crash population within the ODD of 
an automated vehicle to use as a baseline). Further, this Framework investigates, in collaboration with private 
industry, the affects advanced vehicle applications may have in the treatment condition (i.e., estimate conflict 
and crash rates with advanced vehicle applications), producing a preliminary estimate on system 
effectiveness.  

                                                      
17 Driving conflicts refer to driving events that could result in a crash without proper driver intervention to avoid the crash. 
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3.2 Target Crash Population 
Previous research conducted quantified preliminary target crash population estimates for select concept 
automated vehicle functions (Yanagisawa et al., 2017). Results from this research provide a baseline target 
crash population as detailed in Equation (1). Target crash populations for concept automated vehicle functions 
in light-vehicles were estimated in terms of annual police-reported crash frequency, fatal-only crash frequency, 
and comprehensive economic costs.18,19  

The research detailed and exercised a methodology to identify concept automated vehicle functions and their 
designated NHTSA Automation Level, define appropriate ODDs of these functions, correlate their ODD to 
crash data, and query national crash data. The methodology developed five query layers to correlate concept 
automated vehicle function ODDs to crash data; these layers consisted of identifying crash location, pre-crash 
scenario, environmental conditions, travel speeds, and driver condition. Each concept automated vehicle 
function was cross-referenced through the crash databases, using these five layers, to identify addressable 
target crashes. Ten high-level concept automated vehicle functions (NHTSA L2-L4) were identified along with 
nine lower-level concept automated vehicle functions (NHTSA L0-L1). Results were identified by aggregating 
specific concept vehicle functions within automation level and quantifying target crash populations. 
Furthermore, the higher-levels of automated vehicles were quantified using perceived safety benefits from 
near-term production lower-level automated vehicle concept functions. Research results can be seen in  
(Yanagisawa et al., 2017) identifying target crash populations for higher-levels of automation using two distinct 
aggregation methods: (1) assuming higher-levels of automation are independent of one another and (2) 
assuming higher-levels of automation inherit functionality and benefits from any lower-level concept automated 
vehicle function.  

The research above was conducted using available data sources and information at the time. In support of 
NHTSA research, it was determined at the time that using NHTSA levels of automation definitions were 
appropriate. Further, the research was completed in 2015, using crash statistics from the 2013 crash calendar 
year. Currently, Volpe is updated this research task with updated crash statistics with the latest available 
dataset (i.e., 2015 crash data) and correlating the crash data to SAE levels of automation.  

3.3 Estimating System Effectiveness 
This Framework outlines a method to estimate potential safety benefits and system effectiveness of advanced 
vehicle applications using sources beyond historical crash data. Given the current state of the vehicle fleet and 
available research data, external data sources are incorporated to estimate system effectiveness as shown in 
Equation 3. This section describes the current status of using various data sources to estimate the system 
effectiveness of an advanced vehicle applications.  

3.3.1  Defining System Parameters and Operational Design Domain 
An initial task in the system effectiveness process is to identify an advanced vehicle application, its 
functionality, and define an appropriate ODD. The defined functionality and ODD will aid in identifying data 
sources and developing data mining algorithms. In order to exercise the methodology detailing in this 

                                                      
18 Light vehicles are passenger cars, vans and minivans, sport utility vehicles, and pickup trucks with gross vehicle weight 
rating less than 10,000 pounds.  
19 Comprehensive costs include productivity losses, property damage, medical costs, rehabilitation costs, congestion costs, 
legal and court costs, emergency services such as medical, police, and fire services, insurance administration costs, and 
the costs to employers 
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Framework, an automated highway function with simultaneous longitudinal and lateral control (e.g., adaptive 
cruise control (ACC) and lane centering/lane keeping technology) was proposed. This system can be classified 
on various automation levels; however, this analysis will focus on the system as an SAE L2 automated vehicle. 
The ODD is defined as:  

• Light vehicle is the host: the light vehicle is assumed to have the automated vehicle concept 
functions on board and active. 

• System is active on highways only: the system works on properly maintained, high-speed roads 
with limited access (i.e., no intersections, limited variations in normal driving). 

• System can work in inclement weather: the system is negligibly affected by lighting, weather, and 
surface conditions. 

• System would address rear-end, lane-change, and road-departure crashes (at minimum).  
• Driver is engaged and active within the driving task (i.e., driver is monitoring driving environment 

and is responsible for the fallback performance).  

The above constraints will help define data sources and data mining algorithms needed to estimate the 
parameters necessary within the safety benefits equation.  

3.3.2  Baseline Conflict Exposure and Crashes 
A crucial step in the benefits process is identifying a proper baseline condition. Identifying a proper baseline 
condition to compare to a treatment condition can be difficult when a treatment condition is not readily defined 
(one cannot compare vehicle model years when advanced vehicle applications were not standard to situations 
after they became a standard). As future research plans seek to identify and quantify a treatment condition 
(e.g., through field test studies, limited production release, and characterization testing), this Framework 
focuses on identifying and quantifying a proper baseline condition for research plans and benefits assessment.  

Baseline conflict exposure can be determined using the Integrated Vehicle-Based Safety Systems (IVBSS) 
naturalistic driving data. The IVBSS field operational test collected naturalistic driving data from 108 test 
subjects who drove 16 passenger vehicles equipped with integrated vehicle-based warning applications20 
(Nodine, Lam, Stevens, Razo, & Najm, 2011). For each subject, the test period was divided into a 12-day 
baseline condition with the applications disabled, and a 28-day treatment condition with the applications 
enabled. The technology implemented on these prototype vehicles may be similar to technology that may be 
deployed by current advanced vehicle applications21 (i.e., vehicle-based radar and camera system quality and 
algorithms used). The detailed data collected from sensors on vehicles can be used to forecast behavior of 
advanced vehicle applications using the same input sensor data. This can be done by defining and 
characterizing operational boundaries of the technology (e.g., issues from vehicle speed and processing time, 
environmental hurdles, and infrastructure limitations) or simulating advanced vehicle application behavior by 
superimposing system algorithms onto detailed time-history data.  

 

                                                      
20 The IVBSS contained Level 0 (NHTSA and SAE) warning systems, including forward collision warning (FCW), blind spot 
warning/lane change warning (BSW/LCW), and lane departure warning (LDW).  
21 The proposed advanced vehicle application capability translates directly to the IVBSS applications. Longitudinal control 
(i.e., ACC) and FCW target rear-end crashes. Lateral control (i.e., lane keeping/lane centering), BSW/LCW, and LDW 
target lane change and lane drifting/road departure crashes.  
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The IVBSS data was queried for specific events (e.g., alerts and near-crash conflicts)22 that could be 
applicable to the defined advanced vehicle application parameters and ODD. Alerts and near-crash conflicts 
were selected to identify safety critical events (beyond the normal driving task) that may be encountered by an 
advanced vehicle application. This query includes the selected criteria below:  

• Highway miles driven – the advanced vehicle application would only operate on limited access 
roads with higher speeds and limited interruption. 
o Defined by the available road classification variable and selected as “Federal (Interstate) 

Highway” and “State-Owned Highway.” 
• Lighting conditions – the advanced vehicle application may be hindered by poor or complex 

lighting conditions, specifically video based technology and algorithms23. 
o Defined by the available daylight variable and determined as “Day” and “Night”. 

• Weather conditions – the technology may be hindered by adverse weather restricting sensor 
input (e.g., snow on the ground obscuring lane makers, wet roads creating reflections). 
o Defined by the vehicle wiper variable and determined as “Off” to be “Clear” and “On” to be 

“Adverse” weather.  

Overall, the participants drove 110,000 miles on highways. As shown in Figure 8, the majority of driving was 
done under clear conditions during the day. Only 6 percent of miles were driven during adverse weather and 
27 percent of miles were driven during the night and potentially lower levels of lighting. This information shows 
the primary environment in which the proposed advanced vehicle application would most likely operate.  

 

Figure 8: Proportion of highway driving during IVBSS under various environmental conditions. 

                                                      
22 Alerts can be during baseline or treatment condition for FCW, BSW/LCW, or LDW. Near-crash conflicts are determined 
to be conflicts where minimum safety thresholds were met (e.g., small range between vehicles, small time-to-collision 
values).  
23  It was noted earlier that the proposed system would be negligibly affected by these environmental conditions. However, 
instances exist where environmental conditions would significantly impact sensor input (e.g., blocked sensor view from 
environmental debris, broken sensor from environmental debris, extreme glare, reflection, and/or lighting issues, and 
environmental debris covering roadways to unrecognizable conditions).  
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Given that the majority of highway driving occurred during clear weather and the day, the proposed advanced 
vehicle application should perform well under these conditions. However, when operating under adverse 
weather or night, the proposed advanced vehicle application should be able to operate with high confidence 
and accuracy. Figure 9 below shows the confidence and IVBSS system availability for the applications, as 
percent of miles driven, under various environmental conditions.  

 

Figure 9: System availability (percent of miles driven on highways) under various environmental 
conditions 

It can be seen that under clear weather conditions, the system was operating at over 88 percent for the LDW 
system. The small percent of miles driven with no availability is most likely due to poor road maintenance and 
missing lane markings. However, when the weather is adverse, the system availability drops to below 50 
percent. This shows that the system relies heavily on the available lane markings and the ability to accurately 
determine lane and road boundaries. Adverse weather can diminish sensor input by covering lane markings 
and skewing road boundaries. For an advanced vehicle application operating under these conditions, having 
low confidence in sensor inputs can trigger major consequences, including erratic behavior and even crashes. 
The BSW/LCW system was available for almost 100 percent of highway miles. This could be from the fact that 
the BSW/LCW system did not rely on infrastructure for system availability, rather this application used a side 
radar and turn signal as the primary inputs. Further analysis is needed to understand the exact conditions and 
root cause for the system being unavailable or hindered. Results from this analysis will provide input into the 
possible methodologies to estimate the treatment condition. 
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Beyond conflicts, alerts give further insight into safety critical events24. Figure 10, below, shows the number of 
valid alerts issued (baseline and treatment) under various conditions. Given that the majority of highway driving 
is done under clear conditions, the data shows that the highest number of alerts occur during these conditions 
(this data has not been normalized).  

 

Figure 10: Number of valid alerts for the applications under various environmental conditions 

Figure 11 shows similar information for near-crash events. It is of note that the number of alerts and number of 
near-crash events cannot be directly correlated. The alerts are issued by the system and verified by analysts, 
while the near-crash events are identified and verified by the analysts (i.e., not all alerts resulted in a near-
crash event or not all near-crash events had an alert issued). The numbers presented below for environmental 
conditions correspond respectively with the environmental conditions described in this section (1) All, (2) 
Day/Clear, (3) Night/Clear, (4) Day/Adverse, and (5) Night/Adverse.  
 
 
 

                                                      
24 Conflicts and near-crashes are data mined and post processed using Volpe developed thresholds, while alerts are 
designed by OEMs and can be issued directly to the driver during the field test. Alerts may be more imminent than conflicts, 
depending on thresholds set.  
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Figure 11: Number of valid near-crash events for the applications under various environmental 
conditions 

These events can characterize specific safety critical events that advanced vehicle applications may encounter 
within normal driving. By obtaining time history data, these events can by analyzed and assessed for the 
applicability to advanced vehicle applications and potentially forecast an advanced vehicle application’s 
behavior. Further research and detailed information would be needed to accurately assess the behavior of 
advanced vehicle applications in similar safety critical events.  

3.3.3  Treatment Condition 
Given that an advanced vehicle application system is available and can navigate the rigors of normal driving, 
how an advanced vehicle application handles a safety critical event needs to be further researched. A safety 
critical event may have been created from other conditions beyond an advanced vehicle application’s control 
(e.g., abnormal traffic pattern, human driver encountering automated vehicle) and potentially exceed the 
defined ODD. When an advanced vehicle application enters into this conflict, a measure of how the advanced 
vehicle application handles such an event is required. This measure can be compared to that of a human 
driver in the same conflict situation. Further research and collaboration are required to accurately quantify an 
appropriate treatment condition25.  

3.4 Next Steps 
Volpe is currently continuing advanced vehicle application research by refining previous research and 
investigating future data sources and data needs for the benefits estimation methodology. Currently Volpe has 
two distinct tasks to aid in this research: (1) revising the automated vehicle target crash population and (2) 

                                                      
25 Collaboration refers to an agreement with an OEM or supplier of an advanced vehicle application that would allow Volpe 
to learn about the advanced vehicle application, understand the designed ODD, and assess designed system algorithms in 
order to comprehend and quantify a proper treatment condition. 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Benefits Estimation Model for Automated Vehicle Operations: Phase Two Final Report |  38 

identifying baseline target conflicts and crashes from available data sources for crash reconstruction simulation 
with a proposed advanced vehicle application to determine a proper treatment condition.  

3.4.1  Revised Automated Vehicle Target Crash Population 
As noted earlier, Volpe is estimating preliminary target crash populations for automated vehicles. The target 
crash populations quantify the addressable historical crash problem size and provide a starting point for 
identifying a proper baseline condition. This research developed and exercised a methodology to determine 
target crash populations for concept automated vehicle functions and NHTSA automation levels.  

The revised target crash population will use the previous methodology and provide updated statistics. The 
same mapping system will be used (i.e., five query layers of location, pre-crash scenario, environmental 
conditions, travel speed, and driver condition) to accommodate the most recent crash data (i.e., 2015 crash 
calendar year). Further, the revised research will incorporate the SAE Automation Level definitions (instead of 
NHTSA Automation Levels). Target crash populations will again be presented at the automation level, but will 
not consist of aggregate concept automated vehicle functions, but focus on the definition of the level and the 
roles and responsibilities of the driver and system as defined within the SAE automation level definitions. 

Currently, the project is scheduled for completion at the end of the 2018 calendar year with a final deliverable 
of a NHTSA published report, detailing methodology and results.  

3.4.2  Baseline Crashes and Conflicts for Crash Reconstructions 
Significant effort is needed to develop an accurate baseline state of crashes and conflicts. In early 2017, the 
Volpe Center kicked off a collaborative effort with an auto-maker who is planning a significant automated 
driving field test. Tasks in this effort include(1) development of baseline crash and near-crash time-history data 
set, (2) development of automated vehicle treatment data set based on baseline data, (3) scaling up 
effectiveness and benefits to national scales (US and/or European), and (4) discussions on the future 
implications automated vehicles will have on passive safety features.  Task 1 is now underway.   

The collaborative effort is set to end in 2019, with the goal being that data can be shared and combined to 
existing data sets for further validation and improved sample sizes, ideas and methodologies can be 
exchanged to bridge gaps between public and private industries, and collaborative research results can be 
published and shared, providing future interest in research collaborations amongst public and private industry.  

 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Benefits Estimation Model for Automated Vehicle Operations: Phase Two Final Report |  39 

Chapter 4   Vehicle Operations 
After completing a market analysis of traffic microsimulation programs, the Volpe research team utilized PTV 
Vissim (“PTV Vissim,” n.d.). Vissim was chosen due to its ability to easily alter the parameters of the car 
following model, including the oscillation behavior of the vehicle, an aspect critical for automated vehicle 
modeling. Vissim’s internal car following behavior is based on the Wiedemann 99 Psycho-Physical Model 
which assumes that when following another vehicle, a driver’s longitudinal behavior is based on which 
“reaction zone” the driver is in. Figure 12 depicts the Wiedemann approach including a description of each of 
the “thresholds” in the model. Parameters and thresholds in the car following model include: 

• Look-ahead distance 
• Look back distance 
• Duration and probability of not paying attention 
• CC0 – Standstill distance (ft) 
• CC1 – Headway time (s) 
• CC2 – Following variation (ft) 
• CC3 – Threshold for entering ‘Following’ 
• CC4 – Negative Following Threshold 
• CC5 – Positive Following Threshold 
• CC6 -- Speed dependency of Oscillation 
• CC7 -- Oscillation Acceleration (ft / s^2) 
• CC8 -- Standstill Acceleration (ft / s^2) 
• CC9 -- Acceleration with 50 mph (ft/s^2) 

To calibrate the model, one can change the inputs that govern the oscillation behavior. Furthermore, it was 
confirmed, with technical staff at Vissim, that by changing the Wiedemann 99 oscillation parameters (CC2, 
CC4, CC5, CC6, and CC7) to zero, one could approximate the car following behavior of an automated ACC 
vehicle; as an automated vehicle will not have unconscious (or subconscious) reactions.  
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Figure 12:  Wiedemann car following model (Fellendorf, 2001) 

In addition to simulating an ACC vehicle using an adaptation of the Wiedemann model, Vissim also provides 
the capability to input an alternate program to govern the vehicle behavior, through a dynamic link library (.dll). 
This is advantageous because numerous equations have been developed that govern, and/or simulate, the 
car following behavior of an ACC system. Two notable models are the Microscopic model for Simulation of 
Intelligent Cruise Control (MIXIC)26 and Intelligent Driver Model (IDM)27. We utilized these models because 
they (1) reduced our requirement to develop the program code for these models, and (2) provided us the ability 
to perform a true test of our Framework.  

4.1 Analyzing Mobility in the Framework 
As discussed in (Smith et al., 2015) the intention of the Framework is to provide an analytical approach that 
could allow researchers and government agencies to directly compare the potential benefits of different 
technologies to one another. The schematic below describes the approach that we have taken to develop the 
vehicle operations (may be used interchangeably with mobility throughout this document) portion of the 
Framework. Our approach has been:  

1. Initially develop and test a simple road network, but over time migrate to a more realistic one. 
2. Test a variety of automation technologies and potential applications. To date we have tested the 

modified Wiedemann 99 car-following model with the oscillation size set to 0, IDM, and MIXIC, 
the latter being used to model Cooperative Adaptive Cruise Control (CACC) 

3. Prepare the data for environmental analysis modelling in the Motor Vehicle Emission Simulator 
(EPA, 2014). We have defined the steps required, and are now validating to determine the limits 
of the feasible network. 

 

                                                      
26 (Van Arem, de Vos, & Vanderschuren, 1997) 
27 (Kesting & Treiber, 2008) 
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Figure 13:  Framework for modeling vehicle operations 

4.2 Initial Findings on an Idealized Road 
A number of previous research studies have analyzed the potential mobility benefits of ACC, and the findings 
are mixed. While the majority of papers report some benefits of ACC vehicles, there are a few that suggest the 
large headway gaps will lead to cut-ins/lane changes which will reduce overall traffic flow, and that string 
instability will create traffic shockwaves. Furthermore, among the researchers that report benefits for ACC 
vehicles, there is variability in the size of the benefits (e.g., reduced congestion, reduced pollution, higher 
throughput). This variability reinforces the need for a standardized benefits estimation framework. 

To date we have modeled 4 different scenarios:  

• No ACC: This is the baseline for analysis. The driver behavior is governed using the Wiedemann 
99 car following approach using the default values of the model. 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Benefits Estimation Model for Automated Vehicle Operations: Phase Two Final Report |  42 

• Wiedemann ACC: As described above, this is the default car following model but the driver 
oscillation was been removed.  

• The MIXIC Driver Model 
• The Intelligent Driver Model 

This initial work focused on 100% vehicle penetration. In the Vissim model runs, a two-lane freeway, 
approximately 3 miles long, is run through a 4,500-second simulation run, performing calculations and 
collecting data at a 10 Hz rate. The freeway is constructed out of 3 links and 2 connectors, with the middle link 
being approximately 2 miles long. To ensure that traffic has reached equilibrium, data is only collected on link 2 
and only from 900-4,500 seconds (one hour). Vissim was run at a number of different desired vehicles/hr, 
which allowed us to identify the maximum vehicle capacity for each of the scenarios. The maximum lane 
capacity for each of the scenarios is shown below.  

 

Figure 14:  Maximum lane capacities 

The majority of the initial findings are consistent with previous studies; ACC technology at 100% market 
penetration could produce a slight improvement in road capacity. Chapter 5   describes our initial use of CACC 
modeling, results on a real freeway segment, and the linkage to the EPA MOVES model for energy and 
emissions analysis.  

4.3 Case Study on a Real-World Network 
To test the Automated Vehicle Benefits Modeling Framework on a real-world road network, we selected 
Interstate 91 northbound (NB) near Springfield, Massachusetts. The following case study simulating vehicle 
trajectories on I-91 NB is drawn from our paper that is currently under review (Eilbert, Noel, Jackson, Sherriff, 
& Smith, 2018). 

This I-91 NB network is a freeway segment with five on-ramps and seven off-ramps over roughly three miles 
and consisting of mostly three lanes. Much of the energy and emissions analysis below focuses on the I-91 
freeway links between Route 5 and Interstate 291 since they present optimal conditions for simulating cars 
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with CACC systems. A visualization of the I-91 NB network near Springfield is provided as Figure 15 below 
with the I-91 links labeled 100-104 and observed weekday morning traffic volumes at nodes 1-5. 

 

 

Link 100 Link 101 

Link 102 

Link 103 

Link 104 

 
Figure 15: I-91 Vissim network implementation with observed weekday morning traffic volumes 
entering the network and labeled links 100 through 101. 

4.3.1  Network Calibration 
Traffic volumes on the I-91 NB network were defined in the microsimulation using traffic counts from the 
Massachusetts Department of Transportation (MassDOT) Transportation Data Management System (“Traffic 
Volume Counts - MassDOT Highway,” n.d.). We used the most recent counts from weekday mornings from 
07:00 to 08:00. Utilizing these MassDOT records, the volumes were specified in Vissim from the 
corresponding field sensor locations presented in the figure above. The MassDOT volume data indicates that 
more than 2,500 vehicles entered the network from I-91 (Node 1) and that about 1,000 vehicles entered from 
the west on Route 5 (Node 6) and about 700 vehicles entered from the east on Route 5 (Node 2). Volumes 
entering from Massachusetts-83 (Node 3) were not available and were therefore estimated from other nearby 
ramps to be 700 vehicles. On-ramps from local roads had roughly 350 vehicles (Node 4) and 90 vehicles 
(Node 5) entering the network, respectively.  
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A cumulative speed distribution was developed for the I-91 network from a nearby speed sensor (I-91 
northbound from Route 5 southbound, MassDOT Data Locale ID 2797). The desired I-91 speed 
measurements were collected in April 2017 in the following speed bins: 0-39, 40-44, 45-49, 50-54, 55-59, 60-
64, 65-69, 70-74, 75-79, 80-84, and 85-119 mph. For simplicity, the first and last speed bins were dropped and 
then cumulative percentages were calculated for each speed bin in the truncated dataset and assigned to the 
midpoint speed of the bin. Figure 16 below shows the midpoint speed-cumulative percentage pairs plotted for 
the I-91 network with a normal cumulative distribution of speeds for reference. The measured I-91 speed 
distribution was then used as an input to the traffic microsimulations across the three scenarios and all 45 test 
runs. 

 

 
 
Figure 16: Cumulative speed distribution derived from I-91 speed measurements and a normal 
cumulative distribution for reference. 
 
Summaries of vehicle speed, acceleration, delay time, and headway results from the first random seed of 
traffic microsimulations for the I-91 northbound network are presented as box plots below in Figure 17. 
Interestingly, we found that the second scenario with CACC driving does not increase average vehicle speeds 
over the baseline scenario except for Link 101, but it does narrow the range of speeds, particularly for links 
with higher levels of congestion, as shown in Figure 17a. The third scenario where the Wiedemann 99 
oscillation parameters have been set zero does not show appreciable difference in speeds from the baseline. 
In Figure 17b, CACC driving appears to smooth accelerations across all links besides Link 100 while setting 
the Wiedemann oscillations to zero generated even more constant speeds with the exception of Link 101. This 
may suggest that the Wiedemann 99 car following model with no oscillations does perform well on congested 
links. 
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Additional analysis show CACC driving leads to some small to moderate reductions in delay time over the 
baseline, especially for Link 101 and 104, but increases delay time slightly for Link 100, possibly due to the 
merging with Route 5 ahead in the next link. The Wiedemann scenario without oscillations offers marginal 
improvements to baseline delay time if at all, only Link 104 shows a modest improvement.  

Headway has mixed results in Figure 17d. CACC driving yields an observable reduction in maximum headway 
for Link 100, 102, and 103 but not for Link 101 nor 104, potentially due to the MIXIC model leaving more 
following distance than Wiedemann 99 for merging situations. The CACC and baseline scenarios did not show 
any perceptible difference in mean and median headways. The Wiedemann scenario has little effect on 
headway and even produces small increases in maximum headway for the first three links.
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Figure 17: Box plots of vehicle speed (mph) and acceleration (ft/s2) for the first random seed on the I-91 network by link and scenario (red dot represents 
the mean).
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4.4 Vehicle Operations Modeling Limitations 
The current AV Benefits Framework relies in part upon microsimulation modeling techniques. While 
microsimulation is a powerful tool, it is necessary to recognize the limitations of solely relying on its results to 
identify the potential mobility benefits of AV technologies. 

Our current microsimulation approach will allow us to evaluate the benefits related to:  

• Reduction in following distances/improvements in reaction time 
• The potential to eliminate the negative impacts of vehicle longitudinal oscillation  
• Platooning and managed lane changes 

Microsimulation analysis does not readily identify benefits (or dis-benefits) related to: 

• Gawker/rubbernecking delay for both accidents and police action  [Modeling of mobility impacts of 
crashes, as lane/road closures of varying durations] 

• Lane closure for accidents and work zones28   
• Reduced field of vision resulting from  

o solar glare 
o curved roadway where barriers limit sight 
o reduced sight at the crest of a hill. 

Finally, we recognize the need to be cautious of benefits identified through microsimulation analysis. Significant 
calibration of model variables is required to recreate traffic observations of any road/area of interest. Even 
then, the model is only recreating what was observed on a particular time and date, and is easily invalidated by 
changing any travel conditions. As driver behavior (of the remaining manually-driven vehicles) changes due to 
the introduction of automation, simulation models will need to be recalibrated.  

The next phase of CAV modeling will include scenarios with higher congestion and mixed traffic with varying 
penetration rates of CACC-enabled vehicles. In the future, we may explore other driving behavior models for 
CACC, utilize different road networks, and/or consider modeling additional automation technologies like speed 
harmonization or platooning.  
 

 

  

                                                      
28 The Volpe Center and Turner Fairbank currently have a separate project underway to model driver behavior in work 
zones. 
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Chapter 5   Energy / Emissions 
To assess energy consumption and tailpipe emissions, we link a traffic microsimulation model to a modal 
emissions model, utilizing a second-by-second drive schedule output characterizing driving behavior from the 
mobility analysis as a key input into MOVES2014a to estimate fuel efficiency and emission reductions. 
MOVES2014a was chosen because of its availability as a regulatory tool as well as its robust methodology. 
This chapter includes direct excerpts from our previous publications on the potential energy and emission 
benefits of connected and automated vehicle technology. 

As we discuss in our first publication on energy and emission modeling (Reed, Noel, Smith, Rakoff, & 
Bransfield, 2015), MOVES2014a operates by calculating emission rates based on a variety of inputs, 
including vehicle type, age, fuel, speed, acceleration, vehicle miles traveled, acceleration, idling times, 
number of cold starts, soak times, meteorological data, and road-link characteristics. For running 
emissions, rates are estimated through assignment into operating modes. For light-duty vehicles, a key 
indicator of operating mode assignment is through the calculation of the vehicle specific power (VSP), or 
tractive power exerted by the vehicle normalized by the vehicle’s weight. Given a second-by-second drive 
schedule, VSP at time t can be calculated using the following equation: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 =  
𝐴𝐴𝐴𝐴𝑡𝑡 + 𝐵𝐵𝐵𝐵𝑡𝑡2 + 𝐶𝐶𝐶𝐶𝑡𝑡3 + 𝑚𝑚𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡

𝑚𝑚

In which,  
A = tire rolling resistance term (KW sec/m) 
B = rotational resistance term (KW sec/m2) 
C = aerodynamic drag term (KW sec/m3) 
vt = velocity at time, t (m/s) 
at = acceleration at time, t (m/s2) 
m = mass (kg) 

Once the VSPt is calculated, an operating mode can be assigned taking into account defined bins for operating 
speed and acceleration. Operating modes are shown in the table below:  

Table 6: Description of assignment of operating mode for MOVES analysis 

Operating 
Mode 

Operation Mode 
Description 

Vehicle-Specific Power 
(VSPt, kW/metric ton) 

Vehicle 
Speed (vt, 
mph) 

Vehicle 
Acceleration 
(at, mph/sec) 

0 Deceleration/Braking  n/a n/a at ≤ -2.0 OR  
( at < -1.0 AND  
at-1 < -1.0 AND 
at-2 < -1.0 ) 

1 Idle  n/a -1.0 ≤ vt < 1.0 n/a
11 Coast VSPt < 0 1 ≤ vt < 25  n/a 
12 Cruise/Acceleration 0 ≤ VSPt < 3 1 ≤ vt < 25  n/a 
13 Cruise/Acceleration 3 ≤ VSPt < 6 1 ≤ vt < 25  n/a 
14 Cruise/Acceleration 6 ≤ VSPt < 9 1 ≤ vt < 25  n/a 
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15 Cruise/Acceleration 9 ≤ VSPt < 12 1 ≤ vt < 25 n/a  
16 Cruise/Acceleration 12 ≤ VSPt  1 ≤ vt < 25 n/a  
21 Coast VSPt < 0 25 ≤ vt < 50  n/a 
22 Cruise/Acceleration 0 ≤ VSPt < 3 25 ≤ vt < 50  n/a 
23 Cruise/Acceleration 3 ≤ VSPt < 6 25 ≤ vt < 50  n/a 
24 Cruise/Acceleration 6 ≤ VSPt < 9 25 ≤ vt < 50  n/a 
25 Cruise/Acceleration 9 ≤ VSPt < 12 25 ≤ vt < 50  n/a 
27 Cruise/Acceleration 12 ≤ VSPt < 18 25 ≤ vt < 50  n/a 
28 Cruise/Acceleration 18 ≤ VSPt < 24 25 ≤ vt < 50  n/a 
29 Cruise/Acceleration 24 ≤ VSPt < 30 25 ≤ vt < 50  n/a 
30 Cruise/Acceleration 30 ≤ VSPt  25 ≤ vt < 50  n/a 
33 Cruise/Acceleration  VSPt < 6 50 ≤ vt  n/a 
35 Cruise/Acceleration 6 ≤ VSPt < 12 50 ≤ vt  n/a 
37 Cruise/Acceleration 12 ≤ VSPt < 18 50 ≤ vt   n/a 
38 Cruise/Acceleration 18 ≤ VSPt < 24 50 ≤ vt  n/a 
39 Cruise/Acceleration 24 ≤ VSPt < 30 50 ≤ vt  n/a 
40 Cruise/Acceleration 30 ≤ VSPt  50 ≤ vt  n/a 

 
In order to run MOVES, vehicle type, meteorology, fuel specifications, and road network data must be 
input. Road network data consists of link length, link grade, traffic volume and composition, and link 
speed (Alam, Ghafghazi, & Hatzopoulou, 2014). Link speed can be supplied through three methods: 
average speed distribution, second-by-second link drive schedules, or operating mode distributions. In 
this study, we are utilizing operating mode distributions input by externally calculating VSP and assigning 
operating mode using an external tool developed in Python. Studies have shown that when users input 
either operating mode distribution or second-by-second driving schedules, MOVES gives better estimates 
of emissions than with the average speed distribution (Alam et al., 2014) (Abou-Senna & Radwan, 2014) 
(Yao, Wei, Perugu, & Liu, 2014). Emission rates are estimated given the vehicle characteristics as well as 
road and meteorological conditions.  

There are numerous challenges associated with the environmental analysis, categorized broadly as 
challenges associated with the MOVES model and challenges associated with the entire Framework. 

The MOVES2014a model, while a powerful tool for estimating emissions and fuel consumption, relies on some 
limiting assumptions. For one, the terms in the vehicle-specific power calculation, a key parameter in 
estimating emissions rates, are based upon averages meant to represent all vehicles in a given vehicle class. 
In reality, there can be significant variation in the performance of vehicles within a vehicle class, resulting in an 
inherent uncertainty within the model that has not been well characterized. Given that there are multiple 
variables within this complex model, impacts from a given automation scenario can have substantial 
uncertainty. Therefore, it may only be possible to report qualitative results (e.g., some benefit, or no substantial 
benefit) in many cases. Additionally, using MOVES2014a as a means of assessing environmental impacts 
may potentially miss some benefits. For instance, land use does not directly affect emissions or fuel 
consumption but certain land users (carbon sinks) can benefit air quality and offset emissions production. Also, 
MOVES2014a uses a tractive power calculation rather than an engine power calculation and so could miss the 
nuances associated with gear shifting, steering, or pedal control (Fontaras et al., 2015). 

 

Challenges also lie in properly modeling the safety, mobility, travel behavior, and personal mobility components 
of the project. Earlier modeling and analysis in these areas necessarily changes the inputs to the 
environmental analysis and should be properly understood to track impacts. Using default values for car-
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following and other applications found in a microsimulation traffic model, for instance, may not properly reflect 
real car-following behavior, resulting in a skewed estimation of emissions and fuel consumption. It is difficult but 
important to have a foundational understanding of the assumptions upstream of the environmental analysis in 
order to report trends and impacts.  

5.1 MOVES2014a Setup 
Using MOVES 2014a to calculate emissions and fuel consumption, the following shows the inputs used to set 
up the MOVES run.  

• Description 
o <blank> 

• Scale 
o Model: On road 
o Domain/Scale: Project 
o Calculation Type: Inventory 
o Years: 2020 
o Months: January 
o Days: Weekdays 
o Hours: 00:00-00:59 

• Geographic Bounds 
o Region: Custom Domain 
o StateID: 99 
o County ID: 1 
o GPA Fraction: 0.0 
o Bar. Pressure: 28.94 
o Vapor Adjust: 0 
o Spill Adjust: 0 

• Vehicles/Equipment 
o Fuels: Diesel, Electricity, Ethanol (E-85), Gasoline 
o Source Use Type: Passenger Car 

• Road Type 
o Selected Road Type: Rural Restricted Access 

• Pollutants and Processes (selected) 
o Total Gaseous Hydrocarbons: Running Exhaust and Crankcase Running Exhaust 
o Non-methane Hydrocarbons: Running Exhaust and Crankcase Running Exhaust 
o Volatile Organic Compounds: Running Exhaust and Crankcase Running Exhaust 
o Carbon Monoxide (CO): Running Exhaust and Crankcase Running Exhaust 
o Oxides of Nitrogen (NOx): Running Exhaust and Crankcase Running Exhaust 
o Primary Exhaust PM2.5 – Total: Running Exhaust and Crankcase Running Exhaust 
o Primary PM2.5 – Brakewear Particulate: Brakeware 
o Primary PM2.5 – Tireware Particulate: Tirewear 
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• Manage Input Data Series 
o <blank> 

• Strategies 
o Rate of Progress: <blank> 

• General Output 
o Units: Mass – Grams, Energy – Million BTU, Distance – Miles 
o Activity: Distance Traveled, Source Hours 

• Output Emission Detail 
o On and Off Road: <None Selected> 
o For All Vehicle/Equipment Categories: Fuel Type 

• Advanced Performance Features 
o <blank> 

Within the Project Data Manager, data input for the project-level is described below in Table 8. Many of the 
data used in the project-level run were obtained by running a national-scale inventory run and then applying 
national rates and values.  

Table 7: Project data sources 

Data Source 

Age Distribution MOVES2014a Default Age Distribution Tool for 2020 
AVFT National-scale inventory run 
Fuel Formulation  National-scale inventory run 
Fuel Supply National-scale inventory run 
Fuel Usage Fraction National-scale inventory run 
Generic --- 
Hoteling --- 
Inspection & Maintenance (I/M) Programs No I/M programs 
Links Vissim microsimulation model setup and output 
Link Source Type Source type: 21, Source type hour fraction: 1 
Meteorological Data National-scale inventory run 
Off-Network --- 
Operating Mode Distribution Python-derived data from Vissim vehicle trajectory output 
Retrofit Data --- 
Tools --- 
Zone  all allocation factors set to: 1 
Zone Road Type Road Type: 2, Source hours factor set to: 1 

5.2 Operating Modes and Vehicle Trajectory Data Processing 
Another way to examine the link-level performance is through operating mode distributions, as shown in Figure 
4. Operating modes are necessary for utilizing MOVES because MOVES computes tailpipe exhaust emissions 
and energy consumption using time-dependent emissions and fuel measurements by operating mode. For 
each link-specific operating mode distribution in the I-91 Springfield network, the first random seed is 
represented by the bar plot and other 14 seeds are represented by the scatterplot to highlight the variability 
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between simulations. As one might expect, most of the time on these highway links is spent driving at speeds 
above 50 mph (operating modes 33-40) and in midrange VSP bins or braking (operating mode 0). 

As an example, we present a plot of the operating mode distribution of Link 101 from the I-91 network in Figure 
18 below, where we express the variability in the microsimulations by displaying the first random seed as a bar 
and the other seeds as dots. We find that braking (operating mode 0) and driving in operating mode 30 at 
moderate speed (25-50 mph) and high power (30+ kW per metric ton) drop drastically from the baseline to the 
CACC scenario. While the Wiedemann scenario without any oscillations did reduce time in some higher 
operating modes compared to the baseline, it showed increases in operating modes 30 and 40, which have 
the highest VSP bins. 

To expedite the energy and emission estimates, the external Python tool also automatically created a MOVES 
project-scale input database for the link, linksourcetypehour, and opmodedistribution tables. The link table 
contains link-specific road type, length, traffic volume, and average speed and the linksourcetypehour table 
indicates the hourly allocation of vehicle source use type, which was network-specific but did not vary by link or 
simulation. None of the other project-scale inputs were changed for our energy and emissions analysis.  

For each of the 45 microsimulations, the standard MOVES run specifications (stored in an .mrs XML file) were 
edited to include the appropriate input database. Each modified .mrs file was then placed in a MS-DOS batch 
file and run from the command line rather than the MOVES graphical user interface, which can be tedious to 
repeatedly run. The external Python tool processed the 17.5 gigabytes of 10 Hz Vissim-generated vehicle 
trajectories through MOVES project-scale analysis with a single button click. 

5.3 Scenario Development and Results 
Our research focuses on the potential energy and emission benefits of connected and automated vehicle 
(CAV) technologies like cooperative adaptive cruise control. To date we have developed three distinct studies 
to evaluate energy and emission impacts from CAV technologies: 

1. The first publication (Reed et al., 2015) examines a scenario on an idealized highway network through 
traffic microsimulations of passenger cars with the oscillation parameters of the Wiedemann 99 car 
following model set to zero, as discussed in the chapter on vehicle operations, which has been tested 
in previous literature as a rough representation of low level of vehicle automation.  

2. The second publication plugs in a CACC driving behavior model supplied by DOT’s Turner-Fairbank 
Highway Research Center into the microsimulations on the idealized network and starts to experiment 
with different traffic volumes and market penetrations of CACC (Eilbert, Noel, Bransfield, O’Donnell, & 
Smith, 2016). 

3. The third and most recent publication models the energy and emission impacts of the Wiedemann 
scenario without oscillations and CACC scenario on a real-world network, Interstate 91 northbound 
near Springfield, Massachusetts. It goes on to more explicitly describe a three-layered modeling 
framework that integrates a CAV driving behavior model, a microscopic traffic simulation model, and 
the US Environmental Protection Agency’s MOVES for evaluating the energy and emission impacts of 
CAV technologies  (Eilbert, Noel, Jackson, Sherriff, & Smith, 2018). 

 
In the following sections, we will showcase the energy and emission results from each of these three studies 
and will highlight the evolution of our modeling efforts.
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Figure 18: Operating mode distribution of Link 101 on the I-91 network (bar represents the first simulation and the dots represent the other 14 
simulations)



 

5.3.1  Study 1: No Wiedemann 99 Oscillations on an Idealized Network 
Using Vissim to model the Wiedemann 99 car following algorithm with oscillation parameters set to zero on an 
idealized 2-mile highway segment, the MOVES 2014a results for criteria pollutants carbon monoxide (CO), 
nitrogen oxides (NOx), volatile organic compounds (VOCs), and particulate matter less than 2.5 μm (PM2.5) for 
all four scenarios are shown in Figure 20, below. In this study, there were two scenarios with baseline (human) 
driving with default Wiedemann 99 car following, one at a low traffic volume and the other at high volume 
(1,500 and 3,000 vehicles per lane per hour) and two scenarios without Wiedemann 99 oscillations at low and 
high volume. NOx, VOCs, and PM2.5 are also shown in the inset plot to give a better depiction of the emissions 
produced.  

 

 
Figure 19: Impacts of Driving Types and Capacities on Emissions 
 
Below is a zoomed in look at the Oxides of Nitrogen, Volatile Organic Compounds, and PM2.5 Total of the 
above bar chart.  

 
Figure 20: Zoomed in Version of Impacts of Driving Types and Capacities on Emissions 
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It was found that on average automated vehicles perform the same or better (produce less emissions) than 
human drivers. The greatest benefit of automated vehicles is in NOx, with a 32% and a 17% improvement over 
the human driver simulation for the at-capacity and over-capacity conditions, respectively. However, for the 
largest producing pollutant, carbon monoxide, the human driver simulation at-capacity outperforms the 
automated vehicles significantly (only producing 1.8 kg of CO compared to 4.4 kg for the automated vehicles). 
This is expected because of human-driven vehicle operates at higher operating modes than the automated 
vehicles and carbon monoxide has an inverted relationship to speed. Because carbon monoxide contributes 
the most (in grams) to overall emissions, for the at-capacity scenario, human drivers produce only half as 
much emissions as the automated vehicles. For the over-capacity scenario, automated vehicles produce about 
7% fewer emissions overall than the human drivers. This shows that automated vehicles can produce a dis-
benefit under certain specified conditions, thus validating the importance of developing a robust framework that 
can fully assess benefits and dis-benefits.  

Total fuel consumption for the four modeled scenarios is given below:  

 
 

Figure 21: Total fuel consumption for four scenarios on an idealized highway segment 

For both roadway conditions, the automated vehicles consumed less energy than the human drivers, with 43% 
and 20% less fuel consumed in the at-capacity and over-capacity conditions, respectively. Combined with the 
emissions data, this indicates that there can be a trade-off in assessing benefits from automated vehicles since 
the scenario with the largest decrease in fuel consumption showed the largest dis-benefit in emissions.  
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5.3.2  Study 2: Adopted CACC MIXIC Model on an Idealized Network 
 
For the second study, we ran four different scenarios on the same idealized highway segment with the CACC 
model from Turner-Fairbank discussed earlier: 

1. 100% Wiedemann 99 human driving (baseline) at 2400 vehicles/lane/hour 
2. 100% driving with coordinated adaptive cruise control (CACC) at 2400 v/l/h 
3. 50% CACC & 50% human driving at 2400 v/l/h 
4. 100% CACC driving at 4000 v/l/h 

 
The results confirm our initial predictions that vehicles using CACC would produce less emissions than those 
with drivers. At the same traffic volume, emissions are least for the 100% CACC scenario and are most for the 
100% human (baseline) driving scenario. Our findings show that emission rates (g/mi) are less for CACC than 
human driving when normalized for activity; however, total emissions may not be less. In this study, human 
driving shows more braking and changes in speed and VSP than CACC causing additional emissions. Our 
results showed a high percentage of CACC driving falls into operating mode 35 with speeds greater than 50 
mph and moderate VSP, as shown in the figure below. 

 

Figure 22: A bar chart and table of percent reductions in energy and emissions per vehicle from 100% 
human (baseline) driving on an idealized highway segment 

In absolute terms, the inventories for NOx, PM, and energy would increase in the high-volume 100% CACC 
scenario. As a thought experiment, we added the following number of automated vehicles in Table 9, below, for 
comparable results as baseline human driving. With these changes in driving behavior from CACC systems, 
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this means that one could expect roughly equivalent energy consumption and emissions despite a higher 
throughput of vehicles. 

Table 8: Potential number of vehicles added for comparable energy consumption and emissions as 
baseline driving on an idealized highway segment 

 NOx PM2.5 Energy Total 
Human Baseline (vehicles/hr) n/a n/a n/a 4976 
AVs to Add (vehicles/hr) 1711 1833 345 3889 

5.3.3  Study 3: CACC and Wiedemann Scenarios on I-91 Network 
As described in our latest publication, we have developed three scenarios of passenger cars on I-91 
northbound near Springfield: 

1. Baseline driving behavior with Vissim’s default Wiedemann 99 car following model, meant to 
emulate human drivers; 

2. CACC driving behavior according to an adjusted MIXIC model car following model developed for 
FHWA; and 

3. Modified baseline driving behavior where the Wiedemann 99 traffic oscillation parameters have 
been set to zero. 

Despite modest changes to network performance metrics, especially delay and headway, CACC systems 
produce substantial changes to operating mode distributions and subsequent emissions from the baseline 
Wiedemann 99 driving behavior. 

The results follow the same trends across all pollutants and energy use. For comparison, we generated plots 
of the link-level energy and emission impacts across the 45 microsimulations on the I-91 network normalized 
per vehicle, as shown in Figure 23. Our analysis presents results for energy consumption/carbon dioxide (CO2) 
and particulate matter with diameters of 2.5 microns or less (PM2.5). Impacts varied more by link than pollutant 
for the three scenarios. On average, some links saw emission and energy benefits, namely on Link 101 and 
104, for the CACC scenario over the baseline, and other links saw dis-benefits, namely Link 100 and 103. 
CACC systems appear to perform well in congestion and not as well on links prior to congestion. The 
Wiedemann scenario without oscillations had mixed results, where it was often as likely to produce benefits as 
dis-benefits. We found marginal energy/CO2 for Link 100 and 103. 

Pairing the energy and emission results by seed, enables the calculation of the percent reductions for each 
scenario from the baseline on the I-91 Springfield network. Table 10 below shows the mean percent reductions 
and standard deviations for the CACC and Wiedemann without oscillations scenarios for carbon monoxide 
(CO), nitrogen oxides (NOx), fine particulate matter (PM2.5), and volatile organic compounds (VOC) as well as 
carbon dioxide (CO2) and energy consumption. Our findings suggest that CACC driving will lead to sizable CO, 
PM, and VOC benefits along with slight NOx benefits but will not improve fuel efficiency over the baseline. The 
Wiedemann scenario, however, leads to negligible or no benefits from the baseline. 
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Table 9: Mean and standard deviation of energy, CO, NOx, PM2.5, and energy/CO2 benefits (percent 
reductions) on the I-91 network for the CACC and Weidemann scenarios from the baseline over the 15 
random seeds  

 

 

 

 

Based on our results above, using an independent driving behavior model for simulating specific CAV 
technologies appears to be preferable over changing the default microsimulation parameters to mimic CAV 
driving. While this paper only examines CACC systems, the Modeling Framework enables the assessment of 
other SAE J3016 Level 1 automation technologies or combinations thereof, such as: 

• Dynamic speed harmonization, 
• Platooning, 
• Lane keeping assistance, and 
• Cooperative lane change. 

Driving behavior models can also be calibrated and validated against field tests of instrumented vehicles as the 
CAV technologies become available. Using MOVES, this study has developed a streamlined process to 
evaluate energy and emission impacts of multiple microsimulations of CAVs with high-resolution, 10 Hz vehicle 
trajectory data through an external Python tool. 

 
CACC from Baseline Wiedemann from Baseline 

Pollutant Mean Std Dev. Mean Std Dev. 
CO 20.12% ±3.85% -0.84% ±6.64% 
NOx 2.53% ±2.20% 1.59% ±3.21% 
PM2.5 25.24% ±4.05% -3.35% ±7.55% 
VOC 10.41% ±2.89% 1.71% ±4.61% 
Energy/CO2 -0.23% ±1.38% 0.25% ±1.97% 
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Although this research presents some promising outcomes in the reduction of environ / emissions, it does not 
address issues associated with higher levels of driving automation (e.g., SAE Level 3 and above). Changes in 
vehicle ridesharing and ownership, routing and mode choice, and even land use due to self-driving and 
driverless vehicles will undoubtedly lead to other environmental effects. This work could also potentially be 
extended to evaluate CAV noise benefits due to reduced accelerations and decelerations. Continuing in our 
research, we plan to examine higher levels of congestion and different CAV penetrations, further investigate 
lane changing, test other driving behavior models, and utilize more network-specific data in MOVES to refine 
this Modeling Framework.   

Figure 23: Volume-normalized link-level energy and emission results by I-91 link for each of the 45 
simulations for (a) energy/CO2 and (b) PM2.5 

(a) (b) 
 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Benefits Estimation Model for Automated Vehicle Operations: Phase Two Final Report |  60 

Chapter 6   Economy and Jobs 
Increasing levels of vehicle automation may create significant improvements in road safety by reducing the 
large share of vehicles crashes that are associated with some form of driver error, inattention, or impairment. 
Automation-enabled applications such as cooperative adaptive cruise control, platooning, and eco-driving can 
also yield improvements in traffic flow, fuel use, and emissions. Each of these impacts has value to society in 
the form of reducing the costs of crash-related injuries, reducing the time and money costs of travel, enabling 
access to valued destinations, and reducing the health-related and environmental consequences of vehicle 
emissions. While the exact magnitude of these impacts is not known at this time, they can be estimated using 
modeling and simulation tools, and then converted to monetary terms for the purposes of benefit-cost analysis 
(BCA).  

6.1 Impacts on Economic Growth 
BCAs for conventional transportation projects do not typically include broader macroeconomic impacts, since 
these impacts are usually small and diffuse. For example, replacing a set of four-way signalized intersections 
with roundabouts may improve safety and travel times, but is unlikely to create measurable changes in 
economic output at the national or even regional scale. However, some large-scale investments and 
transformative technologies do have the potential to affect overall economic growth, as in the much-studied 
cases of the Erie Canal, the transcontinental railroad, and the Interstate Highway System among others.   

There are several plausible mechanisms by which automated vehicles could affect economic output through 
influences on the determinants of economic growth, i.e. on labor supply, capital stock, and productivity. One 
mechanism is through increased labor supply: Level 5 automation (fully self-driving vehicles) would remove 
barriers to job access for large numbers of people who cannot drive due to disability, thereby increasing their 
labor force participation. Traffic safety improvements and the availability of automated transport services could 
also mean fewer working hours that are lost to crash-related injuries and delays, to other forms of congestion, 
and to the demands of “chauffeuring” children or elderly relatives. Some portion of these time savings may be 
redeployed into paid employment, increasing labor supply and overall economic output.  

Vehicle automation could also be expected to yield improvements in the productivity of labor. For example, 
when relieved of most or all hands-on driving responsibilities, travelers could spend a portion of their workday 
in more productive activities. A property assessor or salesperson who normally devotes part of the workday to 
driving between sites could instead use the time to complete paperwork or contact clients (Executive Office of 
the President, 2016). Electricians, plumbers, and other tradespeople may be able to conduct additional service 
calls during the course of a normal workday to the extent that AVs reduce congestion and thus the time 
required to move between jobsites. Within the transportation sector, a single employee at a control center 
could potentially monitor multiple automated trucks or buses, rather than each vehicle requiring its own 
operator, which would represent a major increase in labor productivity. 

Another potential impact on productivity is that improved travel speeds can increase workers’ effective 
commuting radius – that is, a larger number of jobs will be geographically located within an acceptable 
commute time of the employee’s home. This enables better matching of workers to job requirements, and thus 
– at least in theory – can foster greater division of labor and higher productivity (Timothy, D. & Wheaton, W.C., 
2001). An example of this would be a physician who could earn higher wages as a sports-medicine specialist 
in a larger market such as New York City, but who wishes to remain in rural Connecticut for family reasons. 
The prospect of high-speed AV travel over uncongested (or at least less-congested) roadways, with the ability 
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to sleep or multitask while en-route, could make the daily commute to Manhattan viable in a way that it 
currently is not. 

While each of these mechanisms is plausible, the extent to which these labor market impacts would actually 
occur as a result of AV adoption, as well as their magnitude and the timescale over which they would play out, 
is unclear and would require significant additional research. AV technology is currently at a stage where the 
direct transportation system impacts on which these secondary impacts are predicated – reduced crashes, 
improved traffic flow, new modes of travel – are plausible but have yet to be realized in any sort of large scale, 
real-world setting. Moreover, the most significant impacts appear to be associated with fully driverless vehicles 
(Level 4 or Level 5 automation) rather than with driver assistance functions, and thus may be expected to 
emerge over the course of decades rather than years.  

Existing research in the area of AV-related impacts on productivity is fairly limited, although there have been 
some initial efforts to outline the effects of vehicle automation on overall economic activity and specific sectors 
(Fagnant, D. & Kockelman, K., 2014). Other existing work analyzing the impacts of conventional transportation 
investments on overall productivity and output (see for example, (Puckett, S., 2015)) may also be transferable 
to the case of automation.  

There is also research on other applications of automation and artificial intelligence across the economy as a 
whole. A 2015 study on robotics found that it has added approximately 0.4 percentage points to GDP growth 
across a set of 17 countries for the period 1993 to 2007 (Graetz, G. & Michaels, G., 2015) cited in (Executive 
Office of the President, 2016)). While robotics is widely recognized as a potential contributor to productivity 
growth, at this stage the major economic forecasting firms do not appear to be making adjustments to their 
forecasting models to explicitly account for any productivity or other impacts from AV adoption. 

6.2 Impacts on Employment and Wages 
A recent report by the Executive Office of the President (EOP) addresses the potential impacts of automated 
vehicles within the larger context of artificial intelligence (AI) and robotics (Executive Office of the President, 
2016). The authors note that technological innovations have been a key driver of economic growth throughout 
the nation’s history. It that sense, AI is simply the most recent wave of technological change, with each wave 
bringing enhanced productivity and rising overall living standards, but also causing significant disruptions to 
established industries and often leading to greater income inequality. 

Despite the impressive progress that AI algorithms have made, they are generally most amenable to routine 
tasks that do not require sophisticated human judgment or abstract reasoning and problem-solving. The 
workers at greatest risk for being replaced by automation in the near- to medium-term are therefore generally 
those at lower skill levels. EOP combined the results from a 2013 survey of AI experts on the automation 
prospects for various job tasks with data on average earnings, and found that roughly 83 percent of jobs 
earning less than $20 per hour would be at risk from automation, versus only 31 percent for jobs in the $20-
$40 per hour range, and a mere 4 percent of jobs earning over $40 per hour. This pattern is consistent with the 
skill-biased technological changes that have been observed since the mid-1970s related to advances in 
computing and telecommunications.  

Within the transportation sector more specifically, the EOP report draws on statistics from the Bureau of Labor 
Statistics to estimate that approximately 2.2 to 3.1 million driving-related jobs (part- and full-time) are at risk 
due to automated vehicles. This represents roughly 1½ to 2 percent of total nonfarm employment, and 
includes job classifications such as transit bus driver, inter-city bus driver, school bus driver, light truck and 
delivery driver, heavy truck driver, taxi drivers, and chauffeurs. An additional affected job category, not included 
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in BLS totals but estimated separately by EOP using other research, comprises drivers for transportation 
networking companies (ride-hailing services), such as Uber, Lyft, and Fasten. A separate analysis by the 
Center for Global Policy Solutions (CGPS) using American Community Survey data arrived at a slightly higher 
total of 4.1 million driving jobs potentially at risk from automation (Center for Global Policy Solutions, 2017). 

A detailed analysis from the Department of Commerce, which looked at driving-related duties by occupation, 
arrived at a similar figure of 3.8 million workers in occupations for which driving is a primary activity, and noted 
that these workers are more likely to be displaced by automation than other occupations (Beede, D.R., 
Powers, R., & Ingram, C., 2017). An additional 11.7 million workers are in occupations that have a driving 
component, such as repair and installation, construction, and home health aides. These workers may see 
productivity gains related to automation of the driving portion of their workday (Beede, D.R. et al., 2017).  

While each of these studies agrees on the general magnitude of the potential employment impacts, the 
timeframe for these changes is less clear. One analysis that does mention specific dates comes from the 
International Transport Forum, which estimated that demand for truck drivers could be reduced by as much as 
50 to 70 percent by 2030 across the United States and Europe (International Transport Forum, 2017). The 
time required for a transition to fully driverless operation is the subject of considerable debate within the 
research community, given the many technology and policy challenges (Shladover, S.E., 2014). 

EOP’s analysis finds that potential job losses to automation will vary considerably across occupational 
classifications. Jobs with non-driving components that are less amenable to automation, such as a school bus 
driver’s monitoring of pupils, are less likely to be replaced by automation; EOP estimates that roughly 30 to 40 
percent of such jobs are at risk. Conversely, heavy truck drivers – the single largest category of driving jobs – 
are estimated to have higher risk of job loss, at 80 to 100 percent, due to the relative lack of such non-driving 
functions. Beyond these direct effects, EOP notes that workers with little connection to either driving or 
automation could nonetheless be affected, for example if large numbers of displaced drivers enter the market 
for lower-skill jobs and create downward pressure on wages. It is also possible that some driving-related jobs 
would be transformed into vehicle attendant or monitoring positions with lower wages. 

CGPS’ analysis highlights the fact that minority groups (African-Americans, Hispanics, and Native Americans) 
are over-represented among driving occupations and that, for these groups, average earnings are higher in 
driving-related occupations than in non-driving occupations (the reverse is true overall). This suggests that 
losses of driving jobs due to automation will have disproportionately large negative impacts on employment 
and wages for these demographic groups. 

There are also many potential positive job-market impacts from AVs and automation, including new 
employment opportunities in programming and supervision of automated technologies and in emerging areas 
such as cybersecurity. At high levels of automation, fundamental aspects of vehicle design could also be 
altered, for example with workspaces replacing vehicle controls, creating additional demand for engineers and 
designers. With AVs potentially opening up new areas such as remote parking, automated delivery, or mobile 
offices, new markets and job opportunities could emerge. Moreover, as EOP’s report notes, the history of 
technological change in the US is such that the generally rising overall incomes associated with higher 
productivity will translate into additional demand for a wide spectrum of products and services. 
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6.3 Impacts on Industries 

6.3.1  Automotive and Related 
Within the automotive industry, automation is already beginning to change product offerings and introduce 
competitive pressures for advanced safety and convenience features. Some Level 1 safety functions such as 
automatic emergency braking, while originally introduced in a small group of luxury vehicles, are now widely 
available on a wide variety of new vehicles at almost all price levels. Level 2 functions combining longitudinal 
and lateral control may be the next to make this transition.  

Vehicle-to-vehicle (V2V) technology is on track to be in 50 percent of new vehicles by 2022, according to a 
Juniper Research report. This equates to 35 million total V2V consumer vehicles on the road by that same 
year (Juniper Research, 2017). Not all AV components, however, are approaching the same level of market 
penetration as V2V. LiDAR is a type of sensor that most AV researchers are now using and the demand 
currently outweighs the supply. Companies have to wait months for new LiDAR sensors, and these sensors 
can be expensive, costing tens of thousands of dollars. At least one manufacturer is working on a less 
expensive device that may be more practical for deployment (Simonite, T., 2017).  

To date, however, automation has arguably not progressed to the point where it would change the 
fundamentals of the automotive market, such as sales volumes or profitability. Over the longer term, as fully 
driverless vehicles emerge, impacts on the industry will depend in large part on the ownership and mobility 
paradigm that develops. One possibility is something akin to the status quo, in which most vehicles continue to 
be privately owned by households and operated for their exclusive use. In this case, the business model may 
continue largely as it is now, but with potential changes to fleet turnover due to changes in VMT and vehicle 
ownership rates, along with fewer severe crashes. Conversely, in a future scenario in which many travelers – 
particularly in urban areas – use on-demand or “mobility as a service” concepts in lieu of owning their own 
vehicle, the prevalence of shared fleets could change the economics of the automotive industry. In particular, 
simulation results typically show that a metropolitan area could be served with a much smaller vehicle fleet 
than at present, since the vehicles would be used much more intensively to serve passenger trips rather than 
remaining parked for most of the day (Burns, L.D., Jordan, W.C., & Scarborough, B.A., 2013). While this might 
suggest lower sales volumes, the other side of the coin is that annual mileage per vehicle would be 
substantially higher, leading to more rapid fleet turnover. This pattern of higher vehicle utilization, in turn, could 
also lead to engineering changes that improve durability or other changes to the product development cycle. 
Some analysts have suggested that automobiles that are purpose-built for the AV-taxi (shared mobility) market, 
rather than as personal or family vehicles, could also have simplified designs and lower horsepower, resulting 
in cost reductions of around 25 percent.  

Many automakers are already partnering with or acquiring mobility service providers, which could change the 
automotive landscape for companies and consumers. Car sales tend to be very cyclical, meaning automakers 
can face sharp declines in sales and profits during recessions. Ride-sharing, however, could help offset that 
downturn, by allowing automakers to produce ride-sharing revenues during periods when automobile sales are 
down. Ford recently acquired Chariot, an on-demand shuttle service that began in Silicon Valley and is slowly 
expanding (Miller, D., 2017). In early 2016, General Motors announced its $500 million investment in the ride-
sharing startup Lyft, which also gained GM a seat on Lyft’s board of directors. GM and Lyft are partnering to 
create a network of autonomous vehicles for ride-sharing purposes (Davies, A., 2016). Waymo – Google’s AV 
development company – has also signed a deal with Lyft (Isaac, M., 2017).  

Many automakers and other AV-focused companies are investing in mobility service providers, but the extent 
to which shared mobility services may supplant conventional vehicle ownership depends on a number of 
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economic, technology, and policy variables that are difficult to forecast. In the near- to medium-term, many 
industry analysts expect continued strong growth in the shared mobility sector but with only modest impacts on 
vehicle sales (Grosse-Ophoff, A., 2017). In part this is due to the difficulties of serving the US market, which 
includes many suburb-to-suburb trips and trip-chaining behavior that is not well-suited to shared mobility 
services (Grosse-Ophoff, A., 2017). It is important to keep in mind that market share for shared mobility 
services is currently very low, at less than 1% of all vehicle-miles traveled, so these services can grow 
substantially from their small base while still having relatively little influence on overall sales patterns. 

It is also true, however, that data from the U.S. National Household Travel Survey (NHTS) suggests that less 
than 17 percent of household vehicles that are 10 years old or less are in use at any given time (Fagnant, D., 
2014). Multiple studies and models have tried to estimate the impact that car-sharing could have on personal 
vehicle ownership, as consumers may begin decide that owning their own car is no longer as advantageous as 
using a shared mobility service. Results from a Center for Automotive Research study, which looked at all of 
North America, estimated that one car-sharing vehicle would replace 7.1 private vehicles in 2021. Additionally, 
the study estimates that 164,606 vehicle sales will not be made between 2010 and 2021 due to car-sharing 
(Spulber, A. et al., 2016).  

A report by RethinkX goes much further, estimating that 95% of miles traveled will be inside autonomous 
electric vehicles by 2030, and that these AVs will be owned by service providers, not the passengers 
themselves. The report argues that some forms of AV-related cost savings have been overlooked by other 
studies. RethinkX looks at the cost reductions from the combination of AV and electric vehicle technology to 
support its analysis (Arbib, J. & Seba, T., 2017). 

Although automation is strictly speaking a separate question from fuel and propulsion systems, it is possible 
that a transition to highly automated vehicles would be associated with increased adoption of electric vehicles. 
There are some synergies between the two sets of technologies, for example with EVs typically using brake-
by-wire and throttle-by-wire rather than mechanical linkages, which is more amenable to automated control 
(Energy Information Administration, 2017). The ability of fully automated vehicles to self-reposition for 
recharging would also address one of the current limitations of EVs. Other AV-related changes could change 
the basic economics of the EV purchase decision; for example, higher annual mileage per vehicle would make 
it more likely for the EV price premium to be recouped through future fuel savings. These impacts depend 
strongly on variables such as fuel prices and environmental policies. 

The automotive maintenance and repair fields may also experience changes, for example if advanced safety 
systems result in reduced collisions and associated body work (Clements, L.M. & Kockelman, K., 2017). As of 
March 2017, the U.S. Census Bureau reported total employment in the automotive repair and maintenance 
industry at around 920,300, and total employment has been on an upward trend since 2010 (Bureau of Labor 
Statistics, 2017). But those numbers could fall, depending on how autonomous systems affect vehicle crash 
rates and maintenance needs. Even without full autonomy, vehicles with autonomous pre-crash braking can 
avoid crashes, or reduce the velocity at which the crash occurs, reducing repair costs. In a series of crash tests 
with BMW and KTI, a repair research company in Germany, researchers found that repair costs were reduced 
by more than 29% with vehicles that had pre-crash braking at a collision speed of 64 km/h, and costs were 
reduced even further, to 37%, at a collision speed of 38 km/h (Kiebach, H., 2013). Reductions in crash rates 
and repair costs could reduce the demand for automotive repair, but it is also possible that the sophisticated 
electronics on highly automated vehicles may require more routine maintenance and/or enable additional 
options for remote diagnostics.  

Auto insurance is also likely to evolve as AVs reduce crash rates but potentially create higher vehicle repair 
costs per incident due to the presence of expensive sensing equipment. One analysis describes a potential 
loss of premium revenues for insurers (Clements, L.M. & Kockelman, K., 2017), but since premium rates are 
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set in reference to expected claims, there does not seem to be a major issue for industry profitability, and 
indeed IIHS and other industry stakeholders have strongly supported the rollout of partial-automation safety 
functions such as automatic emergency braking. Although AVs may yield a large reduction in collision clams, 
this transition will take decades to unfold due to the continuing presence of non-automated vehicles. Insurance 
policies will continue to be needed as a backstop, as well as for theft, weather damage, and other 
comprehensive claims. However, the insurance industry has begun analyzing possible changes to the types of 
policies and coverage that may be needed in response to changes in technology and business models 
(Energy Information Administration, 2017). A NHTSA investigation found that Tesla’s Autopilot or Autosteer 
semi-autonomous technology reduced overall crash rates by 40 percent, relative to other Tesla vehicles 
without the technology (Habib, K., 2017). Root, an insurance startup, has extended discounts to Tesla vehicles 
that have the Autopilot technology, though other insurers have argued that Tesla has higher claim frequencies 
(Burke, K., 2017). Another potential market evolution is that insurers may shift from covering consumers to 
covering auto manufacturers who face liabilities when their AVs experience technical failures (Bertoncello, M. & 
Wee, D., 2015). 

6.3.2  Passenger and Freight Transportation 
Automated vehicles will have impacts on other transportation industries through their influence on mode choice 
decisions for passengers and freight. At the margin, lower generalized travel costs for AVs would increase the 
attractiveness of the automobile and trucking modes relative to competitors such as air, rail, and maritime 
transportation. However, the magnitude of these impacts is unclear, and each competing mode has unique 
characteristics that make large-scale changes unlikely. For example, rail and vessel freight will likely still be the 
most cost-effective options for moving heavy cargoes over long distances, and air transportation is likely to 
retain its dominant position for long-haul and transoceanic passenger travel. For moderate-value cargoes 
moving over long distances, where rail and truck compete, there may be some modal shift to truck. Automation 
is also taking root in these fields as well, leading to potentially lower transport costs and higher efficiency that 
would match the advances made with AVs.  

However, some portions of the market may experience more significant changes, such as short-haul air and 
rail travel. Relative to air travel, AVs would retain the current advantages of automobile travel – including 
greater schedule flexibility, point-to-point routing, and the absence of time-consuming check-in and security 
screening requirements – while also adding the ability to work or rest enroute. Highway travel times may also 
be reduced to the extent that widespread adoption of AVs reduces congestion and/or enables safe operation at 
higher speeds. A similar phenomenon has been observed with the introduction of high-speed rail services that 
significantly reduce demand for short-haul air routes (e.g., Paris to Brussels). At the same time, the potential 
availability of on-demand AV taxi-like services may spur additional trip-making by air and rail, by lowering the 
overall cost of travel, and by reducing the need to have one’s own vehicle available for use at the destination. 

6.3.3  Other Industries 
While the principal impact of AVs would be on the automotive industry and the transportation sector, other 
industries could also experience AV-related changes. A study from Intel and Strategy Analytics estimated that 
AVs will be part of a $7 trillion market by 2050, of which nearly $4 trillion would come from driverless ride-
hailing and another $3 trillion from driverless delivery and business logistics. However, the authors estimate 
that an additional $203 billion could come from impacts in other sectors, including healthcare and tourism 
(Lanctot, R., 2017). 

One direct mechanism for AVs to influence the healthcare industry is simply through improved access, as 
transportation-related barriers are common. A review of past studies found that 10 to 51 percent of patients 
reported that transportation was a barrier to their access to care (Syed, S.T., Gerber, B.S., & Sharp, L.K., 
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2013). AVs could address barriers for at least some of these patients – for example, those who cannot drive 
due to age or disability, or cannot use conventional public transportation, but could afford either a personal AV 
or taxi-like service in a shared AV. Some researchers have also posited that AVs could act as medical devices 
themselves, for example by detecting or predicting cardiac events (Gunaratne P, Ebe K, Horan K, Najarian K, 
Soroushmehr S.M.R, 2017). 

Impacts on the other industries are more difficult to predict, but have been the subject of some research and 
analysis. One key impact is that travelers who use fully automated vehicles would potentially have large blocks 
of free time during their daily commutes. A McKinsey & Company study has suggested that AVs could free 50 
minutes a day, where each additional minute while in an AV could generate revenues of around $5.6 billion per 
year, if passengers choose to use mobile internet during that time (Bertoncello, M. & Wee, D., 2015).  
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Appendix A. List of Acronyms 

Abbreviation Term 
ACC Adaptive Cruise Control 
AD Automated Driving 
AI Artificial Intelligence 
AV Automated Vehicle 
BCA Benefit-cost Analysis 
BLS Bureau of Labor Statistics 
BSW Blind Spot Warning 
BTU British Thermal Unit 
CACC Cooperative Adaptive Cruise Control 
CGPS Center for Global Policy Solutions 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
DOT Department of Transportation 
DSRC Dedicated Short Range Communication 
EOP Executive Office of the President 
EPA Environmental Protection Agency 
EV Electric Vehicle 
FCW Forward Collision Warning 
FESTA Field opErational teSt supporT Action 
FHWA Federal Highway Administration 
FOT Field Operational Test 
FTA Federal Transit Administration 
GDP Gross Domestic Product 
GHG Greenhouse Gas 
IDM Intelligent Driver Model 
IIA Independence of Irrelevant Alternatives 
IIHS Insurance Institute for Highway Safety 
ITS JPO Intelligent Transportation Systems Joint Program Office 
IVBSS Intelligent Vehicle Based Safety Systems 
IVTT In Vehicle Travel Time 
KPI Key Performance Indicator 
L1,L2,L3,L4,L5 Levels of automation (See SAE J3016) 
LDW Lane Departure Warning 
MIXIC Microscopic Model for Simulation of Intelligent Cruise Control 
MOVES Motor Vehicle Emission Simulator 
MPO Metropolitan Planning Organization 
NCHRP National Cooperative Highway Research Program 
NHTSA National Highway Traffic Safety Administration 
NOx Oxides of Nitrogen 
ODD Operational Design Domain 
OVTT Out of Vehicle Travel Time 
PM Particulate Matter 
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Abbreviation Term 
POV Privately Owned Vehicle 
SAE Society of Automotive Engineers 
SBIR Small Business Innovation Research 
SIM Safety Impact Methodology 
SIP-adus Strategic Innovation Promotion – Automated Driving for Universal Service 
TRB Transportation Research Board 
TTC Time to collision 
U.S. DOT United States Department of Transportation 
V2V Vehicle-to-vehicle 
V2X Vehicle-to-anything 
VMT Vehicle Miles Traveled 
VOC Volatile Organic Compounds 
VSP Vehicle-Specific Power 
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Appendix B. SI Conversion Factors 

SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 
Symbol When You Know Multiply By To Find Symbol 
LENGTH 
in  inches 25.4 millimeters mm 
ft  feet 0.305 meters m 
yd  yards 0.914 meters m 
mi  miles 1.61 kilometers km 

AREA 
in2  square inches 645.2 square millimeters mm2 
ft2  square feet 0.093 square meters m2 
yd2  square yard 0.836 square meters m2 
ac  acres 0.405 hectares ha 
mi2  square miles 2.59 square kilometers km2 

VOLUME 
fl oz  fluid ounces 29.57 milliliters mL 
gal  gallons 3.785 liters L 
ft3  cubic feet 0.028 cubic meters m3 
yd3  cubic yards 0.765 cubic meters m3 
NOTE: volumes greater than 1000 L shall be shown in m3 

MASS 
oz  ounces 28.35 grams g 
lb  pounds 0.454 kilograms kg 
T  short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 
oz  ounces 28.35 grams g 

TEMPERATURE (exact degrees) 
oF  Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

ILLUMINATION 
fc  foot-candles 10.76 lux lx 
fl  foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf  poundforce 4.45   newtons N 
lbf/in2  poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 
LENGTH 
mm  millimeters 0.039 inches in 
m  meters 3.28 feet ft 
m  meters 1.09 yards yd 
km  kilometers 0.621 miles mi 

AREA 
mm2  square millimeters 0.0016 square inches in2 
m2  square meters 10.764 square feet ft2 
m2  square meters 1.195 square yards yd2 
ha  hectares 2.47 acres ac 
km2  square kilometers 0.386 square miles mi2 

VOLUME 
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SI* (MODERN METRIC) CONVERSION FACTORS 
mL  milliliters 0.034 fluid ounces fl oz 
L  liters 0.264 gallons gal 
m3  cubic meters 35.314 cubic feet ft3 
m3  cubic meters 1.307 cubic yards yd3 
mL  milliliters 0.034 fluid ounces fl oz 

MASS 
g  grams 0.035 ounces oz 
kg  kilograms 2.202 pounds lb 
Mg (or "t")  megagrams (or "metric ton") 1.103 short tons (2000 lb) T 
g  grams 0.035 ounces oz 

TEMPERATURE (exact degrees) 
oC  Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2  candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N  newtons 0.225 poundforce lbf 
kPa  Kilopascals 0.145 poundforce per square inch lbf/in2 
*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with section 4 of ASTM E380. (Revised March 2003) 
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